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ABSTRACT 

Through advances in radiation delivery systems and image guidance, the 

accuracy and precision of radiation therapy has improved in recent times. Some 

aspects with respect to the accuracy and precision with which treatments are 

prescribed and planned have also improved, however it has not been to the 

same extent. Radiotherapy has moved from 2D to 3D treatment planning and 

now incorporates multimodality imaging into the contouring process, but there 

is still variation in tumour delineation. This thesis is an investigation into the 

impact of contouring, planning, and organ motion variation on dosimetry and 

modelled outcome in a variety of disease scenarios. The effect of contouring 

uncertainty in the lung was investigated with a retrospective dataset of non-

small cell lung cancer patients. Planning uncertainty due to planner experience 

was studied using a head and neck case and the influence of organ motion was 

considered in the post-prostatectomy setting. Finally, the techniques developed 

to analyse contouring variation were applied to a gynaecological clinical trial 

benchmarking dataset to incorporate contouring uncertainty into the trial 

sample size calculation.   

 

For some treatment sites, the uncertainty in radiotherapy target delineation is 

greater than that of organ motion and setup error. As radiotherapy treatment 

techniques have become more conformal, the relative importance of contouring 

uncertainty has increased compared to other sources of error in the treatment 

chain. Understanding the impact of contouring variation on modelled outcome 

would aid in the development of contouring guidelines, adaptive radiotherapy 
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protocols, margin definition and clinical trial quality assurance. The impact of 

contouring variation on modelled outcome was assessed for a series of non-

small cell lung cancer patients. The results of this work should inform the choice 

of metric used and ensure that future contouring studies are more consistent 

and comparable. 

 

A significant advantage of IMRT over standard conformal techniques is the 

ability to highly conform the dose distribution around sensitive healthy tissues. 

This increased conformity comes at the expense of increased plan complexity 

and delivery time. In the context of clinical trials, variation in treatment 

planning approaches, and the experience of centres in IMRT planning, has been 

shown to result in significant variations in dosimetry. There are a variety of 

techniques available for producing an IMRT plan and planner experience may 

have an impact on the final plan quality. The influence of planner experience on 

IMRT plan quality was assessed through a head and neck case planning study. 

Treatment delivery time and monitor units ranged from 15-25 minutes and 

approximately 800-1200 MU with delivery time increasing with decreasing 

planner experience. The planner with the least experience had the poorest plan, 

as indicated by achieving the fewest PTV constraints of all planners studied.  

 

It has been known for some time that the prostate bed can experience inter- and 

intra-fraction motion due to its proximity to the bladder and bowel, organs that 

are constantly filling and emptying. Endorectal balloons (ERBs) have been used 

in prostate radiotherapy as organ stabilising devices. In this work, ERBs in the 
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post prostatectomy setting were evaluated. The ERB significantly improved 

inter-fraction reproducibility for the rectum and the CTV. Concordance indices 

for non-ERB and ERB of 0.50 ± 0.12/0.71 ± 0.07 for the rectum and 0.72 ± 

0.15/0.73 ± 0.11 for the CTV were demonstrated. However, the improved 

geometric stability with the ERB did not translate into a statistically significant 

benefit in inter-fraction dosimetric stability. 

 

Protocol deviations in Randomised Controlled Trials have been found to result 

in a significant decrease in outcomes. In some cases, the magnitude of the 

detrimental effect can be larger than the anticipated benefits of the 

interventions involved. The accuracy of radiotherapy contouring is one of 

largest contributors to protocol deviations in radiotherapy trials. It is well 

recognised that robust methodology and quality assurance is required to ensure 

the validity of RCTs. This study aims to model the effect of contouring variation 

on tumour control probability (TCP) and consequently on clinical trial sample 

size. PORTEC3 is a phase III clinical trial comparing concurrent chemoradiation 

and adjuvant chemoradiotherapy with pelvic radiation alone in high risk 

advanced stage endometrial carcinoma. A benchmarking exercise was 

performed for the PORTEC3 RCT amongst Australian and New Zealand centres. 

The results of this benchmarking exercise were then used to assess the 

robustness of the sample size calculations. This work provides a framework to 

incorporate quantified uncertainties as part of routine benchmarking exercises 

in RCT sample size calculations to ensure robust results are obtained from 

RCTs. 
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Chapter 1: Introduction 

 

“It is best to prove things by actual experiment; then you know; whereas if you 

depend on guessing and supposing and conjectures, you never get educated.” 

(Mark Twain, 1906) 

 

“With 14 million new cases and 8 million related deaths in 2012 cancer is a major 

cause of morbidity and mortality worldwide”[1]. The technology of radiotherapy 

planning and delivery is constantly evolving to meet the challenge of safely 

delivering a therapeutic dose to cancerous tissues. A prerequisite to delivering 

safe, precise radiotherapy is understanding the sources and impact of 

uncertainty in each step of the treatment chain[2]. When determining the benefit 

or otherwise of new technologies and techniques through clinical trials, 

rigorous methodology must be adopted to ensure protocol compliance[3]. 

 

The accuracy and precision of radiation therapy has improved in recent times 

through advances in radiation delivery systems and image guidance. Although, 

some aspects, with respect to the accuracy and precision with which treatments 

are prescribed and planned have improved, it has not been to the same extent. 

Radiotherapy has moved from 2D to 3D treatment planning and now 

incorporates multimodality imaging into the contouring process, but there is 

still variation in tumour delineation and inverse planning.[4]. Through the 

analysis of delineated 3D images, that is, contours, in radiotherapy planning it is 
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possible to investigate a number of aspects of the planning and delivery process 

(Figure 1). This thesis is by publications, and is an investigation into the impact 

of uncertainty in contouring, planning, and organ motion, on dosimetry and 

modelled outcome. 

 

Figure1.1 Radiotherapy process diagram identifying which aspect of the 
treatment chain each chapter addresses 

 

The analogy of William Tell shooting the apple from his son’s head (Figure 1.2) 

is not new in radiation therapy[5]. But, it is of particular relevance to the work 

presented in this thesis; accurately defining and hitting the target while 

avoiding injury.  
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Figure 1.2 William Tell shooting at the apple, woodcut from Ein Schönes 

Spiel…von Wilhelm Thellen, by O. Schweitzer, 1698. 
 

1.1 Account of scientific progress linking the publications 
in the thesis 

 

The investigation into contouring variation in radiotherapy began with a review 

of the literature. Contouring variation has for a number of years been 

recognised as a major uncertainty in radiotherapy[6]. A clinically focused review 

had been published earlier[7] but there was no work summarising the methods 

of analysis of contouring variation. With the advent of 3D planning in external 

beam radiotherapy and brachytherapy, there had been a large increase in the 

number of contouring studies being published. Here, a contouring study is 

broadly classified as an investigation that analyses the variation between a 

number of delineations on medical images in order to elucidate some 

information about the planning and delivery process. Most commonly, the 
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information sought is about inter- or intra-observer contouring variation but 

may also include the impact of organ motion, image quality, contouring 

guidelines, clinical trial protocol evaluation, atlas development and training. The 

literature review, presented in chapter 3 identified a number of different 

methods of analysis. These techniques were explained with advantages and 

disadvantages in particular situations. What was obvious from the literature 

was that there was no consensus on the appropriate techniques to use, and that 

methods employed were dictated by  bespoke software and expertise available 

to investigators rather than evidence. 

 

The work presented in chapter 4 aimed to address the issue identified in the 

literature review, i.e. the lack of consensus in analysis technique in contouring 

studies. This was achieved by establishing which contouring variation metrics 

were most likely to impact on dosimetry and modelled outcome and therefore, 

be most relevant to reporting. The impact of contouring variation on dosimetry 

had been investigated previously[8-10], but this was the first study assessing the 

correlation between these two factors. The contouring variation metrics that 

were most significantly correlated with modelled outcome were identified for 

conformal lung cancer radiotherapy. This work presented a methodology that 

could be employed in other tumour sites and treatment techniques to ascertain 

the most relevant metrics of contouring variation to report. This work was 

repeated for head and neck cancer inversely planned radiotherapy, see 
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Appendix A. The best achievable contouring concordance between planning 

systems was investigated by our group using a phantom study, see Appendix B. 

 

Similar to contouring uncertainty, inter-observer variation in radiotherapy 

planning has been identified as a confounding factor on radiotherapy trials[11]. 

The International Commission on Radiological Units (ICRU) has outlined 

procedures for prescribing and reporting in radiotherapy[12-14] that guide the 

planning process. In the context of inverse planning there may be inter-observer 

variation due to planner experience with respect to adjusting parameters to 

achieve the end result. A study assessing the impact of planner experience on 

dosimetry is presented in chapter 5. This work demonstrated that planner 

experience can influence both plan quality and delivery efficiency in the context 

of head and neck inverse planning. 

 

The resulting dosimetric impact of day-to-day organ deformation and position 

can be similar to that of contouring variation. Involving both systematic and 

random uncertainties, see section 2.2.2.1. Therefore, similar analysis techniques 

to those used in chapter 4 can be employed to assess the dosimetric impact of 

organ motion using contoured daily cone beam computed tomography (CBCT) 

imaging. Endo-rectal balloons (ERBs) have been used extensively in prostate 

radiotherapy[15] to stabilise the prostate and minimise the amount of rectal wall 

in the high dose area. The use of ERBs in the post-prostatectomy setting had not 

been investigated to the same extent. Chapters 6 and 7 employ similar analysis 
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techniques to those used in chapter 4 to assess the impact of organ motion on 

dosimetry and margins with and without the ERB. This was the first study 

published investigating the day-to-day reproducibility of the prostate bed with 

the ERB in situ. The significance of the findings were that ERBs did reduce organ 

motion, particularly for the rectum. Further study is warranted to confirm 

whether this translates into better dosimetric reproducibility with a larger 

patient cohort. 

 

Contouring and dosimetric uncertainty has been shown to be a major 

confounding factor in radiotherapy clinical trials[16]. Yet, there are a number of 

other uncertainties in clinical trials, that is, predicted treatment response, 

combined modality treatment effect, patient dropout etc. The difference in these 

uncertainties in the response rate and patient dropout are routinely accounted 

for in sample size calculations for clinical trials. Using the analysis techniques 

from previous chapters, it is possible to ascertain the uncertainty in modelled 

outcome due to contouring and planning uncertainty. The study presented in 

chapter 8 details the results of a benchmarking study for the PORTEC3 trial[17]. 

PORTEC3 is a phase III clinical trial comparing concurrent chemoradiation and 

adjuvant chemoradiotherapy with pelvic radiation alone in high risk advanced 

stage endometrial carcinoma. The benchmarking study quantified the 

contouring and planning variation amongst participating centres adhering to 

the same protocol in Australia and New Zealand. Chapter 9 utilised the 

contouring and modelled outcome analysis techniques mentioned above to 
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establish impact of contouring variation for the PORTEC3 trial. This work 

presented a novel technique for incorporating contouring uncertainty into the 

sample size calculation for a randomised controlled trial (RCT). 

 

 

1.2 Specific aims and objectives 

 

1.2.1 The impact of contouring variation on modelled radiotherapy 

outcome  

 

For some treatment sites, the uncertainty in radiotherapy target delineation is 

greater than that of organ motion and setup error[7]. 

 

As radiotherapy treatment techniques have become more conformal, the 

relative importance of contouring uncertainty has increased compared to other 

sources of error in the treatment chain[7]. While many studies have analysed 

contouring uncertainty geometrically, few have considered the potential impact 

on dosimetry[18]. 

 

Given varying anatomy and treatment goals, certain clinical sites may be more 

susceptible to dosimetric impacts of contouring variation than others. 

Understanding the impact of contouring variation on modelled outcome would 
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aid in the development of contouring guidelines, adaptive radiotherapy 

protocols and clinical trial quality assurance. 

 

Research question: 

 

What is the relationship between contouring variation and predicted 

outcome using radiobiological modelling for non-small cell lung cancer 

(NSCLC)? 

 

Chapter 4 analyses the correlation between geometric contouring variation and 

tumour control probability (TCP) for a series of NSCLC patients. 

 

1.2.2 The influence of planner experience on IMRT plan quality  

 

Intensity modulated radiation therapy (IMRT) has become the standard of care 

for a number of treatment sites and is performed in over 90% of Australian 

centres[19]. The advantage of IMRT over standard conformal techniques is the 

ability to sculpt the dose distribution around sensitive healthy tissues[20]. This 

increased conformity comes at the expense of increased plan complexity and 

delivery time[21]. In the context of clinical trials, variation in treatment planning 

approaches, and the experience of centres in IMRT planning, has been shown to 

result in variation in treatment plans[22]. There are a variety of techniques 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
25



www.manaraa.com

 

 

 

available for producing an IMRT plan and planner experience may have an 

impact on the final plan quality. 

 

Research question: 

 

What is the impact of planner experience on the quality of radiotherapy 

treatment plans in the head and neck region? 

 

Chapter 5 presents an analysis of head and neck IMRT plans generated by six 

different planners of varying IMRT planning experience. 

 

1.2.3 Investigation of organ motion, dosimetry, and margins in the 

presence of organ stabilising devices 

 

Adjuvant radiotherapy delivered post radical prostatectomy results in longer 

time to biochemical failure and improved local control compared to 

surveillance[23]. There is also a survival benefit associated with adjuvant 

radiotherapy for patients <70 years old or who had positive surgical margins[23]. 

It should be noted, these results are derived from the pre-prostate speficic 

antigen era and are currently under investigation in a number phase three 

randomised trials[24, 25]. Owing to excellent target coverage and critical structure 

sparing, intensity modulated treatment techniques are the preferred method of 

treatment delivery in post prostatectomy radiotherapy.  
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The target volume in post prostatectomy radiotherapy is bounded by the 

bladder and rectum and therefore may experience deformation due to organ 

motion. Furthermore, bladder and rectal changes day to day can be 

significant[26]. 

 

Endo-rectal balloons have been used to stabilise anatomy extensively in intact 

prostate radiotherapy[27]. It remains to be demonstrated if endo-rectal balloons 

actually improve dosimetric reproducibility on a day-to-day basis.  

 

Research questions: 

 

Does the use of an endo-rectal balloon in situ improve dosimetric precision 

in post-prostatectomy radiotherapy? 

 

Does the use of endo-rectal balloons reduce the required planning target 

volume (PTV) margin for organ motion in post prostatectomy patients? 

 

Chapter 6 presents a geometric and dosimetric comparison of two cohorts of 

post-prostatectomy patients treated with and without an endo-rectal balloon in 

situ. Chapter 7 uses the same cohort of patients studied in chapter 6 but 

specifically analyses organ motion and the required PTV margin to account for 

it. 
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1.2.4 Benchmarking and assessing the impact of contouring 

variation in radiotherapy clinical trials 

 

A randomised controlled trial (RCT) is the most effective means available to 

answer questions about treatment effectiveness when designed, conducted and 

reported appropriately[28]. It is well recognised that robust methodology and 

quality assurance (QA) is required to ensure the validity of RCTs[29]. 

 

Accurate delineation of target volumes and organs at risk for radiation therapy 

planning is required for high quality treatment as it has a direct flow-on effect 

for the rest of the radiotherapy chain. The ability of clinicians to contour 

according to protocol has been investigated for a number of RCTs[16, 30-33]. The 

accuracy and consistency of contouring in a RCT may be affected by 

heterogeneity within contributing institutions technology and experience[7].  

 

Protocol deviations in RCTs have been found to result in a significant decrease 

in survival and local control[16]. In some cases the magnitude of the detrimental 

effect can be larger than the anticipated benefits of the interventions involved[16, 

34]. Implementation of appropriate QA of radiotherapy measures for clinical 

trials has been found to result in fewer deviations from protocol[35]. 
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The modelled impact of dosimetric uncertainty on sample size for RCTs showed 

that reduced uncertainty in dose resulted in a significant reduction in required 

patient numbers[36]. Dosimetric uncertainty is influenced by contouring 

variation and has been demonstrated to be significant for a number of clinical 

sites[37-39].  

 

Research questions: 

 

What is the magnitude of endometrial cancer contouring variation in 

Australia and New Zealand? 

 

What is the impact of contouring variation on the statistical power of 

clinical trials and can it be accounted for by ensuring optimum patient trial 

recruitment numbers? 

 

Chapter 8 presents the results of a benchmarking QA study performed in 

Australia and New Zealand for the PORTEC3 RCT[17]. Chapter 9 assesses the 

impact of contouring variation on clinical trial design using the benchmarking 

dataset from the PORTEC3 clinical trial. 
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1.3 The journey 

 

The research presented in this thesis was undertaken in the School of Physics 

within the Faculty of Engineering and information Sciences. Expertise and 

laboratory support was provided within the Centre for Medical Radiation 

Physics, at the University of Wollongong.  Treatment planning facilities and 

clinical research supervision were also provided by the Liverpool Cancer 

Therapy Centre (LCTC) and the Ingham Institute for Applied Medical Research 

where most of the day to day research was undertaken. The Illawarra Cancer 

Care Centre (ICCC) at Wollongong Hospital also provided data and clinical 

guidance for a portion of the research undertaken. The contouring, planning and 

organ motion studies were performed at LCTC. The clinical trial QA and 

statistical power studies were completed at ICCC. 
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Chapter 2: Literature review 

 

2.1 Radiotherapy 

2.1.1 Cancer and the role of radiotherapy 

In Australia, excluding non-melanoma skin cancer, 123920 people were 

diagnosed with cancer in 2014[40]. Although the mortality rates from cancer are 

falling, in 2014 cancer related deaths still accounted for approximately 3/10 of 

all deaths in Australia[40]. The five year overall survival of cancer patients has 

improved in Australia from 46% in 1982-1986 to 67% in 2007-2011, however 

this has not been consistent across all tumour types[40]. In 2014 the most 

commonly diagnosed cancers in males were estimated to be prostate, bowel, 

skin (melanoma), lung and head and neck[40]. While in women the most 

commonly diagnosed cancer sites were estimated to be breast, bowel, skin 

(melanoma), lung, and uterine[40].   

 

In 2013 the Collaboration for Cancer Outcomes Research and Evaluation 

(CCORE) provided a report to the Australian government department of health 

and aging reviewing optimal radiotherapy utilisation rates[41]. These rates 

estimate the number as a percentage of diagnosed cancer patients that would be 

treated with each resource as part of an optimal treatment regimen. The 

reported optimal rates of radiotherapy and brachytherapy were 48.3% and 

3.3%, while chemotherapy was 8.9%[41]. Meaning, that in the Australian setting, 
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based on the best available data, radiotherapy is indicated for 48.3% of 

notifiable cancers, either delivered as a monotherapy or in combination with 

chemotherapy or brachytherapy[41].  

 

 
Figure 2.1 From Thariat et al[42]. Timeline of radiotherapy evolution from the 
discovery of X-rays by Röntgen to modern intensity modulated techniques.  

 

2.1.2 Trends in radiotherapy treatment delivery 

The discovery of X-rays by German physicist Wilhelm Röntgen in 1895 heralded 

the beginning of the use of radiation in medicine (Figure 2.1)[43]. Although it 

should be noted that the rays Röntgen named, and was the first to 

systematically describe, were also studied in the 1800s by various others[44]. 

The time between discovery and reported first use of X-rays for a medical 
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purpose was 60 days[45], although, there is some debate as to whether this is 

historically correct. The first verifiable reported use of X-rays medically was in 

Stockholm[46] to treat basal cell carcinoma and was reported at the 1899 

Swedish Society of Medicine meeting.  

 

The first 40 years of radiotherapy was dominated by the use of kilovoltage X-ray 

beams. These were categorised into soft, medium and hard X-rays by 

penetrative properties. The lower energy beams were used to treat a variety of 

skin cancers, dermatological and inflammatory conditions in the era before 

antibiotics and steroids[44, 47]. While the higher energy or harder beams were 

used to treat deep-seated tumours. There are a number of drawbacks to treating 

deep tumours with kilovoltage energies; the dose to skin and overlying tissues 

is quite high due to attenuation of the low energy beam, absorption in bone and 

long treatment times[48]. 

 

Teletherapy (external beam) devices using Radium were also manufactured in 

North America and Europe[44]. With the advent of nuclear reactors man-made 

isotopes became available in 1948, and Cobalt-60 was used as a Teletherapy 

source widely for 20-30 years[42]. Linear accelerators (linacs) were developed 

before and during the second world war and the first electron accelerator 

designed for medical use was installed in the Hammersmith hospital, London in 

1953[48]. The first patient treated in North America with a 6 MV linac was at 

Stanford in 1956[49]. Both Co-60 and linac based mega-voltage therapies allowed 
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skin-sparing application of radiation dose to deep tumours in the pelvis and 

thorax for the first time. 

 

The first computed tomography (CT) image of a patient was acquired in 1971[50] 

and in the 1980s was being implemented in radiotherapy departments[42]. This 

permitted more accurate definition of the tumour and healthy tissues. Dose 

distributions could now be sculpted in three dimensions (3D) using treatment 

planning systems (TPS) with beams eye view and linacs with multileaf 

collimators (MLCs). This so called 3D-conformal radiotherapy saw many 

tumour sites benefit from higher doses and improved organ at risk (OAR) 

sparing[42].  

 

Intensity modulated radiation therapy (IMRT) was first proposed by Brahme[51]  

in 1988 and started entering clinics due to technology advances (e.g. MLC) in 

the late 1990s[52]. IMRT modulates the intensity of the radiation to enable 

precise shaping of the dose distribution to the target while avoiding healthy 

tissue[21]. There are a variety of different techniques for delivering IMRT 

including; beam compensators[53], and MLCs in both step and shoot[54] and 

sliding window mode[55]. Volumetric modulated arc therapy (VMAT), first 

proposed by Yu[56] (called Intensity Modulated Arc Therapy) in 1995, is a form 

of rotational IMRT and has become standard of care in many centres. This was 

later refined by Otto[57] to improve the optimisation technique required to 

generate a plan. 
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2.2 Radiotherapy treatment planning 

Radiotherapy treatment planning is the process in which the tumour and 

healthy tissues are defined in 3D and used to generate a dose distribution that 

will guide the technical delivery of the beam by the treatment machine (Figure 

2.2). With the increasing use of computers in radiotherapy, treatment planning 

has evolved from 2D radiographs to multiple 3D datasets that include both high 

resolution anatomical information and functional information. Computers have 

also had an influence on beam delivery, from standard open fields using beams-

eye-view to intensity modulated beams that closely shape the dose to targets 

while avoiding healthy tissues.  

 

Figure 2.2 Radiotherapy process including treatment planning steps in red, from 
Gupta et al[58] 

2.2.1 Imaging 

Radiotherapy planning relies largely on 3D imaging. CT was the first imaging 

modality that allowed the visualisation of the tumour in relation to the 
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surrounding tissues in 3D. CT also provides electron density information, which 

is required for understanding radiation transport in tissue. However, soft tissue 

definition on CT images can be poor and lead to target delineation 

uncertainties[59]. Other imaging modalities can be registered with CT to better 

delineate the location of tumours and OARs. Magnetic resonance imaging can 

provide excellent anatomical soft tissue definition[59]. Other functional imaging 

techniques include positron emission tomography (PET) and single photon 

emission tomography (SPECT).  

 

2.2.1.1 Positron Emission Tomography (PET) 

PET imaging has been shown to improve target delineation in a number of 

treatment sites, particularly head and neck, and lungs[60]. Different molecular 

imaging agents enable the visualisation of different tumour characteristics 

including metabolism (FDG), hypoxia (FMISO), and proliferation (FLT). PET 

imaging can also be used for response assessment and may prove valuable in 

the setting of adaptive radiotherapy[61]. 

 

2.2.1.2 Magnetic Resonance Imaging (MRI) 

MRI refers to the production of 2D and 3D images that correspond to the 

macroscopic density distribution of nuclear spins within the volume being 

imaged[62, 63]. MRI can provide excellent soft tissue definition in areas that CT 

does not, for example, defining the apex of the prostate. In recent times, there 
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has been accelerated research growth in the application of MRI to 

radiotherapy[64]. This is in part due to a lack of ionising radiation required for 

imaging as well as newer MRI scanners having wide bore designs that can 

accommodate patient immobilisation devices[65]. MRI can also be used to image 

functional characteristics of tumours and healthy tissues. Diffusion weighted 

imaging (DWI) makes use of the limited diffusion of water molecules to 

generate an image and therefore is a measure of cellularity. DWI may prove 

useful for treatment response assessment in a number of tumour sites[66]. Two  

factors limiting the uptake of MRI in radiotherapy is the lack of required 

electron density information for dose calculation[67] and geometric distortion[68]. 

 

2.2.2 Contouring  

Contouring refers to the process of segmenting anatomical structures on digital 

images[69]. This is of particular importance in radiotherapy planning as the 

segmentation of tumour and healthy tissues is used to guide the treatment and 

identify areas to be avoided. Technically contouring can be performed on any 

image type but CT is typically used as it is required for dose calculation by the 

major treatment planning system vendors[69]. It is commonplace in radiotherapy 

planning for PET and MRI data to be registered to the planning CT to aid in 

defining primary tumours and involved nodal regions. 
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It is widely accepted that contouring is one of the largest sources of uncertainty 

in the radiotherapy treatment process[70]. Assessing this uncertainty is difficult 

due to the lack of a derivable ground truth from imaging data[69]. It is, in theory, 

possible to establish ground truth through invasive techniques (surgical 

intervention or biopsy) but in practice this is impractical and has additional 

uncertainty when registering specimens to imaging data[71]. Alternatively 

investigators assess variation from different physicians (inter-observer) or the 

same physician (intra-observer) and in a number of different clinical situations 

(see contouring studies section). 

 

In radiotherapy planning for the individual patient, the dosimetric accuracy is 

closely related to quality of contouring.[69]. Manual delineation is currently the 

most widely used method of target and normal structure contouring, which is 

time consuming and subject to error for the reasons mentioned above. Reducing 

contouring time and achieving universally precise contours is the goal of 

automated contouring[69]. Indeed, automated contouring is required in adaptive 

radiotherapy where many datasets need to be delineated quickly, accurately 

and consistently[69]. Highly accurate automatic segmentations are currently 

achievable for some organs and image types but there are still a number of 

challenges to be faced including image artefact, patient specific features, organ 

motion and unpredictable shapes of abnormal tumour growth[69].  
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2.2.2.1 Volumes and margins 

To ensure consistent definition of dose distributions in three-dimensional space 

the ICRU has proposed a set of principles. These principles, for prescribing, 

recording and reporting photon beam therapy have been published in a number 

of reports[12, 13, 72]. These reports describe a number of volumes to be used in 

defining radiotherapy treatments (Figure 1.3). The gross tumour volume (GTV) 

is the macroscopic extent of malignant growth as determined by palpation or 

imaging. The clinical target volume (CTV) is the volume which contains the GTV 

and any microscopic malignant disease. The planning target volume (PTV) is a 

volume which contains the CTV plus a margin to account for organ, tumour, and 

patient movement, and uncertainty in delineation and setup. The treated 

volume and irradiated volumes are defined as the volume of the prescription 

and tissue volume which receives a dose that is considered significant in 

relation to normal tissue tolerance. The internal target volume (ITV) is the 

volume that accounts for movement and deformation of the CTV due to 

physiological processes. The organs at risk (OARs) or critical normal structures 

are tissues that might influence treatment planning or prescription through 

potential morbidity if irradiated. The planning organ at risk volume (PRV) is the 

OAR plus a margin to account for uncertainties and variations in position and 

definition to avoid serious complication. The remaining volume at risk (RVR) is 

the imaged volume, excluding any contoured OARs and CTVs. 
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Figure 1.3 Diagram showing the relationship between different treatment 
volumes as defined by ICRU report 62[13] 
 

In defining the PTV margin one must account for geometric uncertainties in the 

treatment planning and treatment process. These include tumour delineation 

(see Section 2.3), unknown extent of microscopic spread of malignant disease, 
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organ motion and patient setup[73, 74]. To calculate the required margin to 

account for these uncertainties, they are commonly classified as systematic or 

random[75]. If the mean irradiation geometry of the fractionated treatment 

differs from the geometry in the treatment plan this is considered a systematic 

error[75]. Variations in position around the mean from fraction to fraction are 

considered random errors[75]. Stroom and Heijmen[75] also note that the source 

of random and systematic errors may be the same. The impact of systematic 

errors is larger than that of random errors and thus in modern margin recipes 

these are given a larger weighting[73]. By far the most popular margin recipe is 

that of van Herk, Equation 1. 

                 (1) 

  

Where Σ is the standard deviation of the systematic errors and σ is the standard 

deviation of the random errors. 

 

2.2.3 Assessing plan quality 

Geometric and dosimetric accuracy are closely related in radiotherapy, 

contouring dictates where the dose is to be delivered but the quantum of dose 

deposited is also important. It has been stated many times in the literature that 

deviations of 7-10% in delivered dose can be detected clinically[70, 76, 77]. In his 

1984 paper on dosimetric precision Brahme states, “If the normalized dose 

response gradient is higher than 3, as is frequently the case, the relative standard 
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deviation of mean dose in the target volume should be less than 3 per cent to 

achieve an absolute standard deviation in tumour control probability of less than 

10 per cent”[78]. Assessing plan quality consists of checking 1) that the plan 

matches the treatment intent (i.e. prescription) and 2) that the delivered dose 

matches the plan[21]. When evaluating whether a plan matches treatment intent 

,the radiation oncologist and the planner can make use of the dose display, dose 

volume histograms (DVH) and some planning systems provide tools that allow 

for assessment of tumour control probability (TCP) and normal tissue control 

probability (NTCP) [79] (see Section 2.4). Dose conformity indices were 

introduced by the Radiotherapy Oncology Group (RTOG) as method of assessing 

how closely and uniformly the prescription isodose conformed to the target 

volume[80], Equations 2-4.  

                    
    
  

 (2) 

 

                  
    
  

 (3) 

 

                 
   
  

 (4) 

 

Where, Imin is the minimal isodose surrounding the target, RI is the reference 

isodose, Imax is the maximum isodose in the target, VRI is the volume of the 

reference isodose and TV is the target volume. Since the RTOG 

recommendations there have been a variety of different techniques proposed to 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
42



www.manaraa.com

 

 

 

assess the conformity of the prescription dose to the dose to normal tissues in a 

general way that enables comparison between studies[80-82]. 

 

2.3 Methods of analysis in contouring studies for Radiation 
Oncology 

 

Chapter 3 of this thesis is a review article that was published in 2010 and was 

the first publication towards this PhD thesis. Chapter 3 provides a detailed 

overview of contouring studies and methods of analysis in radiation oncology. 

There have been four other reviews in this area[6, 7, 18, 83], all differ slightly in 

scope but nonetheless overlap the subject area covered in Chapter 2. Here, a 

brief summary of these reviews will be provided outlining common issues 

identified in the literature. 

 

Weiss and Hess[7] published a review of the available literature in 2002. The aim 

was to evaluate impact of inter-observer variability in contouring on the global 

geometric accuracy in radiotherapy. From the literature 18 studies were 

identified and reviewed with respect to tumour site, number of patients and 

observers, volume of interest and key results. From these studies Weiss and 

Hess hypothesised the causes of contouring variation and gave a number of 

recommendations including the use of clear protocols, advanced imaging and 

peer review to reduce uncertainty.  
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Njeh’s[6] commentary in 2008 aimed to bring attention to the issue of 

contouring variation as the “weakest link” in the overall radiotherapy treatment 

chain. In the article Njeh outlines the planning and delivery process and 

definitions of accuracy and precision. Some of the solutions for contouring 

variability identified by Njeh include the use of appropriate imaging for 

delineation, PETCT in head and neck cancer for example. Njeh also recommends 

continued education and peer review as possible solutions to contouring 

variation. 

 

The articles by Hanna et al[83] and Fotina et al[18] both deal specifically with the 

metrics used to quantify contouring variation. Hanna et al performed a 

systematic review using PubMed using search terms relevant to contouring 

studies. Hanna et al identified 63 studies across a range of tumour sites, the 

most common of which was lung. Fotina et al, is not strictly a review but did 

perform a comprehensive literature search of overlap metrics for contour 

comparison. They then calculated this metrics for a series of 7 prostate and 8 

lung cases that were contoured by 8 observers. 

 

All of the articles save for the review by Njeh acknowledged the issue that there 

is no consistent method or form of reporting used for contouring variation 

studies, with respect to the number of patients and observers to the metrics of 

comparison used. Hanna et al recommended the use of an overlap metric, DICE 

similarity index for instance, in combination with volume and centre of mass. 
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Fotina et al agreed with Hanna et al but also recommended descriptive statistics 

and a statistical measure of agreement. 

 

2.4  Motion in radiotherapy 

 

Motion is a confounding factor in the delivery of effective radiotherapy. Motion 

in this context, refers to deviation of the target and normal structures from their 

planned position, with respect to the treatment coordinate system. This motion 

can occur over a range of time scales. There are a number of methods that have 

been proposed to account for motion, these depend on the type and magnitude 

of the motion and the treatment site in question (i.e. gating for lung, 

transponders for prostate). 

 

2.4.1 Types of motion 

The main sources of motion encountered in radiotherapy can be broadly 

classified as intra-fraction and inter-fraction motion. Intra-fraction motion is 

that which occurs during a treatment fraction. Inter-fraction motion is defined 

as motion that occurs between treatment fractions. Motion that operates on 

intra-fraction time scales includes: cardiac, respiration, organ filling, peristalsis, 

and patient movement. Furthermore, inter-fraction motion can arise from day-

to-day differences in organ filling, treatment setup, and response of normal and 

tumour volume changes due to radiation[84]. For intra-fraction motion the 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
45



www.manaraa.com

 

 

 

trajectory of the tumour or organ will vary depending on the location within the 

body and the fixation of the tumour with respect to its surroundings[85]. 

 

2.4.2 Image Guided Radiation Therapy (IGRT) 

IGRT refers to the integration of imaging equipment within the treatment room 

to acquire images of the patient in the treatment position prior to or during 

radiotherapy[86, 87]. Accounting for, and minimising the impact of motion on 

radiotherapy treatment is the aim of IGRT. The technologies used to deliver 

IGRT are varied in sophistication and complexity, but all use imaging to align the 

patient to the planned position. The ideal properties of an IGRT system have 

been described by Mageras[88] and include: accuracy and precision, efficiency, 

integration, broad application, reduced radiation dose, real time data collection 

and cost effectiveness. Radiation based systems may use the mega-voltage 

treatment beam to generate an image using an electronic portal imaging device 

(EPID) or film. Further, a cone-beam CT (CBCT) may be used, kVCBCT consists 

of a kilo-voltage imaging source (usually orthogonal to the treatment beam) and 

a flat panel detector. The Tomotherapy system uses the treatment beam with a 

reduced energy to generate a mega-voltage fan-beam CT image. Other systems 

use multiple kilo-voltage sources stereoscopically to localise bony anatomy or 

markers. Non-radiation based IGRT systems may use optical cameras, 

electromagnetic tracking, ultrasound or MRI to discern patient anatomy or 

markers in order to align the patient with the treatment beam. All of these 
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technologies, implementations, commissioning procedures and limitations have 

been reviewed in detail by De Los Santos et al[89].  

 

2.4.3 Impact of organ motion on plan quality 

When treating a moving target, the delivered dose distribution may not match 

that of the treatment plan, which does not typically include uncertainty due to 

motion. The extent to which the delivered dose differs from that of the planned 

dose depends on how the motion interferes with the delivery, and is of 

particular importance in dynamic and modulated deliveries[85]. Motion may 

interfere constructively or destructively with MLC motion, gantry rotation, 

collimator rotation, or dose rate[85]. The frequency of the motion in question will 

also play a role. Inter-fraction motion will cause day-to-day differences from the 

planned dose which will average out over the course of treatment. Intra-fraction 

motion may cause differences from the planned dose, which is averaged out 

over that treatment session. It has been stated previously that these effects will 

not constitute a problem as, over many fractions the cumulative impact is to 

only slightly smear the dose distribution[90]. But, with the increasing use of 

hypofractionated treatment delivery the potential impact of organ motion on 

the delivered dose is demanding increased investigation[91].  
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2.4.4 Strategies to reduce motion 

Depending on the treatment site a number of different motion reduction 

techniques have been reported. Thermoplastic masks are now commonplace 

fixation devices for the treatment of head and neck patients. These masks are 

placed in a water bath to soften and are then moulded to the patient, used daily 

for position they can reduce inter-fraction setup error[92]. Abdominal 

compression has demonstrated motion reduction for lung and liver treatments 

by reducing the amount by which the diaphragm can move freely[93]. A number 

of different products have been proposed for prostate radiotherapy. The 

Rectafix, is a plastic rod which is inserted into the rectum during simulation and 

treatment. The Rectafix increases the separation of the rectum and the prostate 

and reduces rectal motion. Endorectal balloons serve a similar purpose in that 

they are also inserted into the rectum during simulation and treatment to 

stabilise the rectum and move the posterior rectal wall away from the high dose 

region[15]. Hydrogel spacers, are injected under transrectal ultrasound guidance 

between the rectum and prostate and last for a number of months. The gel 

creates a space between the rectum and prostate and results in a reduction in 

rectal doses for the majority of the prostate patients[94]. 

 

2.4.5 Strategies to account for motion 

Pre-treatment imaging can be used to reduce the impact of inter-fraction 

motion on the delivered dose. Margins can also be used to account for inter- and 
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intra- fraction motion however the aim of IGRT is to reduce treatment margins 

and thus the volume of normal tissue irradiated[85]. One of the simplest and 

earliest proposed methods of accounting for intra-fraction motion was to only 

turn the beam on when the target is inside the beam aperture, this is known as 

gating and was proposed in 1980s by a number of investigators[95-97]. For lung 

radiotherapy, this requires capturing tumour motion in the planning CT scan 

using 4D techniques[98]. Furthermore a respiratory signal needs to be collected 

during treatment in order to gate the beam, this signal may come from a bellows 

belt, fiducial markers, spriometry, or external surrogate[98]. Breath hold 

techniques have also proved useful in gated treatments, whereby the patient 

holds their breath at a desired point in the breathing cycle[98]. Currently the 

most advanced technique to account for motion of the target during treatment is 

realtime tracking[98]. The Cyberknife system uses fiducial markers and 

fluoroscopic techniques to track target motion and compensate with a robotic 

treatment unit[99]. Recently Keall et al[100] reported on the use of 

electromagnetic fiducials to guide dynamic MLC tracking of prostate 

radiotherapy. 

 

2.5 Radiobiological modelling 

 

Radiobiology underpins the discipline of radiation oncology. Classical 

radiobiology informed modern developments in fractionation, the linear 

quadratic model, and our understanding of the repair of radiation damage[101]. 
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However, radiobiology also holds promise in elucidating methods of 

optimisation of biological and physical factors for personalised biologically 

based treatment planning[101]. Radiobiological modelling is a valuable tool in the 

assessment of complex radiotherapy treatment plans[102]. For example, the 

comparison of IMRT and conformal plans for prostate radiotherapy[103] or step-

and-shoot IMRT verse Tomotherapy for head and neck cancer[104]. 

 

2.5.1 Mechanisms of radiation induced cell death 

Radiotherapy exploits the ability of radiation to induce death in cells, of 

particularly interest is the death of tumour cells. There are a number of ways in 

which radiation can cause the death of a cell and, these are influenced by the 

DNA damage response (DDR) system[105], here death is classified as the inability 

of a cell to proliferate. How and when cells die is determined by the DDR, which 

can vary between different types of tumour and normal cells and within 

populations of tumour cells[105]. The characteristics of different types of cell 

death are outlined in Table 2.1. Apoptosis is a highly regulated form of cell death 

that is an essential and normal part of many physiological processes, which can 

be induced by irradiation[105]. Autophagy translated means ‘self-eating’ and 

refers to a process where cells consume their own cytoplasm. Autophagy has 

been observed post irradiation although it is not clear if it is the cell trying to 

survive or dying in this context[105]. Mitotic catastrophe is the process whereby a 

cell dies while it is dividing, usually due to entering into mitosis with some 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
50



www.manaraa.com

 

 

 

accumulated DNA damage[105]. Necrosis occurs when conditions are 

incompatible with normal cellular processes, i.e. exposure to radiation[105]. 

When cells permanently lose the ability to divide they are classified as 

senescent[105], radiation induced DNA damage can cause senescence in cells[106]. 
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Table 2.1 Characteristics of different types of cell death from Okada and Mak [107] 

Type of cell death Morphological changes Biochemical 
features 

Common detection methods 
Nucleus Cell 

membrane 
Cytoplasm 

Apoptosis Chromatin 
condensation; 
nuclear 
fragmentation; 
DNA laddering  

Blebbing Fragmentation 
(formation of 
apoptotic bodies) 

Caspase 
dependent 

Electron microscopy; TUNEL 
staining; annexin staining; 
caspase-activity assays; DNA-
fragmentation assays; detection 
of increased number of cells in 
subG1/G0; detection of changes 
in mitochondrial membrane 
potential  
 
 

Autophagy Partial chromatic 
condensation; no 
DNA laddering 

Blebbing Increased number of 
autophagic vesicles 

Caspase-
independent; 
increase 
lysosomal 
activity 

Electron microscopy; protein-
degradation assays; assays for 
marker protein translocation to 
autophagic membranes; MDC 
staining 
 
 
 
 
 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
52



www.manaraa.com

 

 

 

Mitotic catastrophe Multiple 
micronuclei; 
Nuclear 
fragmentaion 

- - Caspase-
independent (at 
early stage) 
abnormal 
CDK1/cyclin B 
activation 

Electron microscopy; assays for 
mitotic markers (MPM2); 
TUNEL staining 
 
 
 
 

Necrosis Clumping and 
random 
degradation of 
nuclear DNA 

Swelling; 
rupture 

Increased 
vacuolation; 
mitochondrial 
swelling 

- Electron microscopy; nuclear 
staining (usually negative); 
detection of inflammation and 
damage in surrounding tissues 
 
 
 

Senescence Distinct 
hetrochromatic 
structure 
(senescence 
associated 
hetrochromatic 
foci) 

- Flattening and 
increased 
granularity 

SA-β-gal activity Electron microscopy; SA-β-gal 
staining; growth-arrest assays; 
assays for increased p53, INK4A 
and ARF levels (usually 
increased); assays for RB 
phosphorylation (usually 
hypophosphorykated); assays 
for metalloproteinase activity 
(usually upregulated)  

CDK1, cycline-dependent kinase 1; MDC, monodansylcadaverine; MPM2, mitotic phosphoprotein 2; SA-β-gal, senescence-associated β-
galactosidase; RB retinoblastoma protein. 
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2.5.2 The Rs of radiobiology 

Fractionation in radiotherapy was a consequence of technological limitations of 

early X-ray equipment[108] but was later developed through experiments 

performed in France in the 1920s[109], the goal of these experiments was to 

sterilise rams using kV radiation. It was observed that skin damage could be 

reduced if the total dose was divided into multiple small fractions. It was after 

this that fractionation began to be used in radiotherapy, exploiting repair and 

repopulation to spare normal tissues and reoxygenation and redistribution to 

damage the tumour[86]. The Rs of radiobiology (Figure 1.4) are; repair, 

repopulation, redistribution, reoxygenation and radiosensitivity. Repair refers 

to the process by which the function of a cell is restored after acquiring some 

damage from irradiation. Radiation can cause single and double strand breaks 

to DNA, 1 Gy will cause about 1000 single strand breaks and 40 DSB[110]. 

Depending on the type of strand break the cell may employ excision repair, 

mismatch repair or recombination repair[86]. Repopulation refers to the process 

whereby surviving cells, after irradiation, begin to proliferate. Redistribution or 

reassortment of cells within the cell cycle is a regular occurrence in 

homeostasis. It is important in radiotherapy however as different phases of the 

cell cycle are more sensitive to radiation than others with M phase most 

sensitive and S most resistant[86]. Reoxygenation of cells is important in 

radiotherapy as oxygenated cells are more sensitive to radiation damage and 
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hypoxic cells are more resistant[86]. There are a multiplicity of factors that 

influence radiosensitivity of human tumours which are broadly classified into 

tumour (hypoxia, tumour kinetics and number of clonegens), host (defence, 

volume effect and genetic predisposition) and treatment (dose, type of radiation 

and fractionation) factors[86].    

 

 

Figure 1.4 The R’s of radiobiology 
 

2.5.3 The linear quadratic model 

The linear quadratic (LQ) model uses a second order polynomial with a zero 

constant term to fit cell survival data[111]. The formula for cell survival is then: 
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(5) 

 

Where D is the dose and α and β are constants. The LQ model is favoured over 

other power law models because it gives a more accurate description of cell 

survival for low doses[111]. The shape of the curve (Figure 2.3) for this model is 

determined by the ratio of α Gy-1 and β Gy-2, α/β Gy can be seen in figure 10 as 

the point on the curve at which the damage from the linear and quadratic 

components is equal[111]. This model has been in wide spread use for a number 

of years owing to its ability to accurately predict radiation response both in vitro 

and in vivo[111]. 

 

 

Figure 2.3 The linear Quadratic model 
from Joiner, 2009 
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2.5.4 Equivalent Uniform Dose (EUD) 

EUD was proposed by Niemierko in 1997 and is defined as the uniform dose 

that, if delivered over the same number of fractions as the non-uniform dose 

distribution of interest, yields the same radiobiological effect[112]. In 1999 

Niemierko extended the notion of EUD to normal tissues with the generalised 

EUD[113]: 

     (∑    
 

 

)

 
 

 (6) 

 

Where vi is the fractional organ volume receiving the dose Di and a is a 

parameter describing the volume effect which is tissue specific. 

 

2.5.5 Tumour Control Probability (TCP) 

Radiation dose response curves are sigmoidal in shape with the likelihood of a 

radiation effect increasing with increasing dose. There are three standard 

approaches that have been commonly used to mathematically model dose-

response; Poisson, logistic and probit[114, 115]. The only model with a 

radiobiological background is the Poisson model as it is based on the Poisson 

statistical model of cell kill[116]: 
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Where D50 is the 50% response dose and γ is the maximum value of the 

normalised dose response gradient. The logistic model is widely used in biology 

applications, outside of radiation oncology, for estimating response 

probabilities[115]. One of the drawbacks of this model is that there is no simple 

mechanistic basis and, therefore, no biological interpretation of its 

parameters[115]. Despite this, the logistic model enjoys widespread use in 

radiobiology to describe dose response in empirical TCP models. For example, 

Källman et al [116] used: 

 ( )   
 

*  
   
 +

   
(8) 

 

The probit model has been used for its ease of computation when 

approximating the Poisson model[116, 117]. It is also useful for estimating the 

impact of dosimetric and biological uncertainties[116, 117]: 

 ( )  
 

 
 [     [√   (  

 

   
)]] (9) 

 

2.5.6 Normal tissue complication probability (NTCP) 

One of the most widely used NTCP models, particularly in north America, is the 

Lyman model[118]. This model calculates NTCP as function of uniformly 

irradiated dose in a fractional organ volume[119]: 
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Where D is the dose to the irradiated volume fraction v, the m parameter 

determines the slope of the NTCP curve at 50% complications, TD50(v) is the 

dose that gives an NTCP of 50%. The Lyman model assumes a power law 

relationship between tolerance dose and irradiated volume fraction although 

there is no biological basis for this. Instead, it is a mathematically convenient 

technique that agrees with clinical data, here n is restricted to values 0-1[120]. In 

order to use this model with non-uniform dose distributions, histogram 

reduction techniques are used, the most common of which is the Kutcher-

Burman[121] method. 

 

The volume and structure of tissue irradiated is an important factor when 

considering clinical tolerance[122]. The concept of functional subunits (FSUs) was 

introduced by Withers et al[123] in 1988. FSUs are defined (with respect to 

tumour) as the largest tissue volume, or unit of cells, that can be regenerated 

from a single surviving clonogenic cell. Within an organ FSUs can be arranged in 

a parallel or serial architecture. In a parallel architecture it is thought that FSUs 

function independently[122], therefore, a threshold volume (i.e. the number of 
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irradiated FSUs) must be considered. The risk of complication in a parallel 

organ depends on the total dose and is less influenced by hot spots. Parallel 

organs include the kidney, liver and lung[122]. In serial organs the function of 

that organ is dependent on each individual FSU. Serial organs include the spinal 

cord, intestine and oesophagus[122]. As the function of the organ depends on the 

function of each FSU, hotspots are important in predicting clinical response[122]. 

 

Kallman et al[116] introduced the relative seriality or s-model in 1992 which was 

designed to describe the response of an organ with a mixture of serial and 

parallel FSUs: 

 

     {  ∏[   (  )
 ]  

 

}

 
 ⁄

 (11) 

 

Where, vi is the organ volume receiving a dose Di and P(Di) is the complication. 

The parameter s describe the relative contributions of the serial and parallel 

tissue architectures with a value of one for completely serial and zero for 

completely parallel[114].  

  

Emami et al[124] in 1991 published a paper that outlined normal tissue radiation 

tolerance doses according to how much of the organ is irradiated, 1/3, 2/3 or 

the whole volume. Due the paucity of available data for all relevant organs the 

expert panel took the approach of using consensus to determine the tolerance 
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doses. In the same issue of the journal Burman et al fit the Lyman model to the 

data presented by Emami et al to provide estimated NTCP. The Quantitative 

Analysis of Normal Tissue Effects in the Clinic (QUANTEC) report was published 

in the international journal or radiation oncology biology physics in 2010[125]. 

This was a series of reviews and vision papers that aimed to provide focused 

summaries of dose/volume/outcome data for a number of organs relevant to 

radiotherapy as the first significant update since the Emami data[125]. Some of 

the values reported in the special edition include lung whole organ V20≤30% to 

ensure no greater that 20% chance of symptomatic pneumonitis or rectal whole 

organ V75<15% for <15% chance of ≥ grade 2 late rectal toxicity[126]. Some 

limitations, areas for improvement and opportunities for future research were 

also identified[127-131]. 

 

2.6 Radiotherapy clinical trials 

 

The first randomised, medical therapeutic clinical trial was run by Hill in 1946-

48 and demonstrated that streptomycin was superior to bed rest alone for the 

treatment of tuberculosis[132], Sir Austin Bradford Hill said of the trial that it 

“can be seen to have ushered in a new era of medicine”. The earliest trials in 

radiation oncology were conducted in Manchester, England, in 1948[133], and 

involved the investigation of breast cancer. There were a number of trials 

conducted in North America in the 1950s examining the role of radiotherapy in 

breast and lung cancer[133]. Two trials in the 1960s made an impact on patient 
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management, an early Hodgkin disease and locally advanced prostate cancer 

trial where radiotherapy was investigated as a primary curative treatment[133]. 

After a number of years of smaller national and cooperative groups in Europe 

and North America performing trials there was a need for a more unified 

multidisciplinary approach. This new approach saw the formation of the 

radiation oncology group (ROG)[134] within the European organisation for 

research and treatment of cancer (EORTC) and radiation therapy oncology 

group (RTOG)[133] within the National Cancer Institute (NCI). In Australia and 

New Zealand the Trans-Tasman radiation oncology group (TROG) was formed 

in 1989. All of these organisations recognise the important role of QA in 

ensuring the quality of radiotherapy trial data in terms of integrity, consistency, 

reliability and accuracy[134]. 

2.6.1 Trial design and sample size calculations 

The results of clinical trials underpin the modern healthcare system, it is 

therefore desirable that they are designed and run punctiliously.  The elements 

of good trial design include[132, 135, 136]:  

I. clearly stated objectives, specification of eligibility 

II. treatments and endpoints 

III. determination of detectable treatment difference 

IV. specification of treatment assignment 

V. sample size assumptions 

VI. reporting 
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There are a number of different types of clinical trial, which may be broadly 

classified into ‘phases’ based on the general intent of the trial. Phase I trials are 

designed to determine the maximum tolerated dose of a new agent[132]. Phase II 

trials are used to test new treatments that show promise for an anti-cancer 

effect[132]. The goal of phase III or randomised controlled trials is to compare 

treatment regimens. From the CONSORT 2010 statement[135] “Randomised 

controlled trials, when appropriately designed, conducted, and reported, represent 

the gold standard in evaluating healthcare interventions”, the statement goes on 

to say “however, randomised trials can yield biased results if they lack 

methodological rigour”. 

 

One of the key areas in which RCTs can lack rigour is sample size calculation[137]. 

The four basic components of a sample size calculation for a comparative study 

are; Type I error (α), power, event rate in the control group, and a treatment 

effect[138]. A Type I error (α) is defined as a false positive (treatment A is found 

to be superior to treatment B when, in fact, it is not) and a Type II error (β) is a 

false negative (treatment A is found to be no better than treatment B when, in 

fact, it is). Conventionally α is set at 0.05 which equates to a 5% chance of 

making a false positive conclusion, and β is set to 0.20 or a 20% chance of a false 

negative conclusion[138]. The power is the probability of rejecting the false 

negative conclusion and is thus the 1- β, which would equal 0.80 or 80% for the 

previous example. 
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2.6.2 Quality assurance in radiotherapy clinical trials 

Quality assurance in radiotherapy clinical trials has increased in recent times 

through cooperative trial research groups like TROG, RTOG, and EORTC. There 

are also efforts underway to harmonise quality assurance processes 

internationally to create a more homogeneous approach[35, 139]. It was 

demonstrated by Peters et al[140] that poor quality non-compliant head and neck 

radiotherapy was associated with a 20% reduction in overall survival. A 

conclusion that was only possible due to the availability of trial QA data for 

retrospective analysis.  Furthermore it has been shown through secondary 

analysis that protocol deviations may predict poor outcomes[141].  

 

2.6.2.1 Types of quality assurance strategies 

Quality assurance requirements for sites wishing to participate in EORTC 

clinical trials have been classified into five different levels[142]. Level 1 consists 

of a facility questionnaire and an external reference dosimetry audit. Level 2 is a  

benchmarking or dummy run exercise. Level 3 involves performing case 

reviews or audits on a limited number of cases. Level 4 requires extensive case 

review or audit. Level 5 involves performing a complex dosimetry audit.  

 

The facility questionnaire usually consists of a structured document that is filled 

in by a participating institution with information pertaining to; available 

technology, treatment techniques, staffing, and treatment workload[142]. 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
64



www.manaraa.com

 

 

 

Dosimetry audits have been carried out by various organisations for many 

years[143-145] as there are many local department factors that can influence 

calibration, including; staff skill level, available equipment, adherence to 

protocols and secondary standards laboratory used[142]. Benchmarking or 

dummy run exercises involve providing trial investigators with data from a 

typical case and asking them to ‘treat’ the case using the trial protocol[146, 147]. 

Benchmarking exercises can be performed at any time during trial recruitment 

but are ideally run before site activation. If there are large deviations from trial 

protocol the site can be notified and the benchmarking repeated. Benchmarking 

exercises can also be useful in drawing attention to shortcoming and 

ambiguities in the protocol[142]. Case review or audit involves planning data 

being sent to a centralised facility for review of compliance with trial protocol. 

There are a number of treatment planning items that can be verified using case 

audits including contouring of targets and OARs, dosimetry, imaging, and 

planning techniques[142]. Complex dosimetry checks are performed to ensure 

that departments can actually plan and deliver complicated radiotherapy 

treatments. These typically involve generating a plan on a physical phantom and 

then delivering that plan to the phantom and measuring the dose[148].  

 

2.6.2.2 Impact of quality on clinical trial outcome 

It has been reported that the quality of the radiotherapy delivered in a clinical 

trial can impact on the outcome of that trial [140, 146, 149]. Further, a decrease in 

variation in absorbed dose in a clinical trial can lead to a significant reduction in 
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the sample size required to answer the trial question[36]. In a meta-analysis of 

eight cooperative group trials Ohri et al[141] reported that protocol deviations 

were associated with increased risk of treatment failure and increased 

mortality. In a review of EORTC dummy run literature Fairchild et al [146] 

reported that if a centre had taken part in a credentialing exercise they were 

more likely have positive results in future individual case audits.  
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a b s t r a c t

Background and purpose: Contouring variation is a well know uncertainty in modern radiotherapy. This
study investigates the relationship between contouring variation, tumor control probability (TCP) and
equivalent uniform dose (EUD) for conformal non-small cell lung cancer (NSCLC) radiotherapy.
Material and methods: Seven patients were retrospectively recruited to the study and multiple PTV con-
tours were generated based on CT and PET imaging by three observers. Plans were created for each PTV
volume. Volumes were analyzed geometrically using volume, location, dimension and conformity index
(CI). Radiobiological plan analysis consisted of two TCP models and EUD. Spearman’s correlation coeffi-
cient (q) was used to quantify the association between geometric variation and radiobiological metrics.
Results: The variation in CI and TCP for the study was 0.66–0.90% and 0.19–0.68%. Changes in lateral
dimension and volume were significantly correlated with TCP and EUD with an average q of �0.49
and 0.43 (p < 0.01) respectively.
Conclusions: TCP and geometric contour variation show significant correlation. This correlation was most
significant for changes in lateral dimensions of PTV volumes. This association may be used in the
assessment of contouring protocol violations in multicenter clinical trials and aid in the design of future
contouring studies.

Crown Copyright � 2014 Published by Elsevier Ireland Ltd. All rights reserved. Radiotherapy and
Oncology 112 (2014) 332–336

Variability in contouring remains one of the largest uncertain-
ties in modern radiotherapy, despite continued research and inves-
tigation over many years [1]. Methods of assessment of contouring
variation and possible solutions through education, automation
and intervention have been investigated extensively and reviewed
[1–3]. Variation in contouring has been attributed to; observer
experience [4], imaging modality [5,6], the use of guidelines [7],
and patient and tumor factors such as site, stage, age and size [8].

Spoelstra et al. [9] investigated the impact of contouring varia-
tion on dosimetry, showing that the introduction of a contouring
protocol significantly reduced the risk of radiation-induced lung
toxicity. Other studies have shown that contouring variation can
have a significant impact on dosimetry for head and neck, breast
and post-prostatectomy patients [10,11]. Vinod et al. [12] utilized
tumor control probability (TCP) in assessing the impact of incorpo-
rating F-18 fluorodeoxyglucose positron emission tomography
(FDG-PET) on non-small cell lung cancer (NSCLC) planning. They

demonstrated an impact of contouring variation on TCP ranging
from 1% to 24%.

Understanding the impact of contouring variation on TCP
would aid in development of contouring guidelines and adaptive
radiotherapy (ART) protocols. It would also assist in the design
of clinical trial protocols where contouring variation is a known
confounding factor [13,14]. At present, there is no consistent or
widely accepted method of contour comparison [1,2]. Fotina
et al. [2] investigated the relationships between different com-
parison metrics in an effort to recommend a minimum parame-
ter set for ‘‘full description’’ of contouring variation. Ideally the
choice of metric should correlate with clinical outcome, as differ-
ent tumor sites and planning techniques will differ in sensitivity
to delineation variability. The present study was designed to
investigate the relationship between contouring variation and
outcome surrogates specifically TCP, equivalent uniform dose
(EUD) and mean lung dose using a series of NSCLC patient data-
sets. The aim was to recommend geometric parameters for the
assessment of contouring variation, that relate to clinical
outcome.

http://dx.doi.org/10.1016/j.radonc.2014.03.019
0167-8140/Crown Copyright � 2014 Published by Elsevier Ireland Ltd. All rights reserved.
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Materials and methods

Patient datasets

Seven previously treated NSCLC patients were selected for the
study (Supplementary Table 1), five from a prior investigation [12]
and two additional. Free breathing CT scans were acquired with con-
trast using a Siemens Somatom™ (Siemens Medical Solutions,
Erlangen, Germany) system with 2 mm slice thickness and a
512 � 512 matrix. Diagnostic PET CT (dPETCT) scans were acquired
using a Phillips Gemini™ (Philips Healthcare, Best, Netherlands)
PETCT system. Radiotherapy planning PETCT (pPETCT) scans were
also acquired between 17 and 91 days after the dPETCT using the
same system with a flat bed insert. Patients were injected with
400 MBq of FDG, rested 60 min for uptake in supine position before
image acquisition.

Delineation methods

Three radiation oncologists (observers A, B and C) experienced
in treating lung cancer contoured gross tumor volumes (GTVs)
based on the planning CT, dPETCT and pPETCT for each patient.
All contouring was completed using either Focal™ (Elekta Oncol-
ogy Systems, Stockholm, Sweden) or Pinnacle3™ (Philips Health-
care, Best, Netherlands) treatment planning systems (TPSs). The
lung and mediastinal windows were initially set to W850 L-750
and W400 L20 but were allowed to be adjusted. A standard uptake
value (SUV) of 2.5 was used to visualize the primary on the dPETCT
and pPETCT. Nodes were contoured separately if not contiguous
with the primary otherwise, a single GTV was delineated. A uni-
form expansion of 8 mm clipped to bone was used to define the
clinical target volume (CTV) from GTV. The CTV to planning target
volume (PTV) margin was 15 mm craniocaudally and 10 mm
mediolaterally and was not allowed to be adjusted once created.

Reference ‘‘gold standard’’ volume

To assess geometric and dosimetric variation a ‘gold standard’
(GS) PTV was used. Assuming that the true tumor existed within
the observer contours a volume was created in the computerized
environment for radiation research (CERR) [15] with the simulta-
neous truth and performance level estimation (STAPLE) algorithm
using all observer contours [16].

Treatment planning

For treatment planning the dPETCT and pPETCT were rigidly
registered to the planning CT by a senior dosimetrist and contours
copied to the planning CT. Ten conformal radiotherapy (CRT) treat-
ment plans were generated per patient, one for each PTV (CT,
dPETCT and pPETCT) for each observer (A, B and C) and the STAPLE
volume using the Xio™ (Elekta Oncology Systems, Stockholm,
Sweden) TPS to give a total of 70 plans. All plans were generated
for a Siemens Oncor Impression linear accelerator with 1 cm leaves
(Siemens Medical Solutions, Erlangen, Germany) using a 2.5 mm
calculation grid. The originally treated CRT plan (3–5 conformal
beams) (Table 1) was projected on each PTV and modified to meet
International Commission on Radiation Units and Measurements
(ICRU) objectives for coverage and dose homogeneity by adjusting
beam apertures and weights [17]. Further planning goals limited
the volume of lung (excluding PTV) receiving 20 Gy to less than
35% (V20 6 35%) and the maximum spinal cord dose to 45 Gy.

Geometric analysis

All CT, structure and dose data were imported into CERR [15].
An in-house developed MATLAB (The Mathworks Inc, Natick, MA)

application was used to calculate volume, center of mass (COM)
location and maximal dimensions [X(med/lat), Y(ant/post) and
Z(sup/inf)] for each volume. The conformity index (CI) [1] was cal-
culated for each observer volume and the GS volume:

CI ¼ GS \ Vi

GS [ Vi
ð1Þ

where GS = gold standard and Vi = observer contour. A CI equal to
unity indicates perfect agreement while a CI of zero reflects no
overlap. The contours for each patient were treated as a single
group, representing the range of variation for analysis.

Radiobiological analysis and mean lung dose

Assuming the GS volume represented the true PTV, GS dose vol-
ume histograms (DVHs) were exported for plans generated based
on the observer volumes. The impact of observer variation on nor-
mal lung tissue was quantified with mean lung dose (MLD), as a
predictor for radiation pneumonitis [18]. The in-house developed
Comp Plan software [19] was used to calculate MLD and the fol-
lowing radiobiological metrics (see Supplementary Material for
details).

Statistics

Descriptive statistics were used to assess geometric and radio-
biological variation. Spearman’s nonparametric rank-correlation
coefficient (q) was used to quantify the association between geo-
metric variation (volume, COM, dimension and CI) and radiobio-
logical metrics (TCP, EUD and MLD) with a p value less than 0.05
considered significant. SPSS� (SPSS Inc, Chicago, IL) software was
used for all statistical analysis.

In our study we have used 63 separate contours to investigate
the relationship between contouring variation and TCP/EUD, which
gives the power to detect q = 0.4, a = 0.05 (two sided) and 1-b = 0.9
[20] (see Supplementary Material for sample size calculation).

Results

Fig. 1 shows the GS volume and observer contours in the axial
plane for cases 6 and 7. Cases 4 and 7 exhibited the largest varia-
tion in volume with mean contoured volumes of 867 ± 168 cm3

and 899 ± 419 cm3 (Table 1). The largest radiobiological variation
was also noted in cases 4 and 7. Both had involved mediastinal
nodes included in the GS volume which were not contoured by
all observers. As such the nodes were out-of-field for some plans
resulting in mean GS EUDs of 53.6 ± 8.6 Gy and 43.6 ± 21.2 Gy.

While there was relatively large geometric variation in PTV con-
tours for case 6 there is little variation in TCP and EUD. As the
tumor location was in the RLL the beam arrangement consisted
of anterior and posterior obliques. The majority of the contouring
variation was in the ant/post direction while the lateral variation
was minor, resulting in very little contouring variation in the
beams eye view.

Fig. 2 demonstrates the relationship between PTV volume and
MLD. While it is intuitive that larger PTV volumes will result in
higher MLD it was not strictly the case. The figure clearly shows
that variations in PTV volume of up to 500 cm3 can have very little
impact on MLD. This is because the MLD is also dependent on PTV
location, beam arrangement, lung size and technique.

Supplementary Fig. 1 shows the average difference in TCP when
analyzed by observer and imaging modality was generally less
than �0.1%, with standard deviation ranging 0.1–0.35%. The aver-
age difference in EUD for the PTV ranged from less than �1 Gy to
�6 Gy. The average difference in MLD was less than �2 Gy for all
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observers and imaging modalities except for observer X which was
1 Gy, standard deviation ranged approximately 3.5–13 Gy.

Spearman’s q was calculated to investigate the relationship
between TCPlogit, TCPpossion, EUD and geometric variation for all
cases (Table 2). X and Z dimension demonstrated the highest cor-
relation with average Spearman coefficients of 0.49 (p < 0.01) and
0.48 (p < 0.01). DCOM and CI showed the weakest correlation with
average Spearman coefficients of �0.25 and 0.31 (p < 0.05).

To investigate dependencies in the data Spearman’s q was also
analyzed with respect to the imaging modality and observer, these
results can be seen in Supplementary Table 2. What this shows is
that when the data are broken down by modality and observer
the metrics with the highest correlation are still XDim, ZDim and
Volume as in Table 2. The correlation values actually increase for
some metrics while maintaining statistical significance. This is lar-
gely due to the fact that observer Z was a significant outlier when
contouring on the PET scans.

Discussion

While there have been studies quantifying the magnitude of
geometric contouring variation in NSCLC, investigations focusing
on the dosimetric impact and correlation remain sparse. Under-
standing the association between contouring variation and local
control for specific tumor sites and treatment techniques is highly
desirable. Here we present the first study comparing the correla-
tion of contouring metrics with modeled outcome, demonstrating
the link between geometric contouring variation and TCP for
NSCLC conformal radiotherapy.

The choice of reference volume to compare all other contours to
is contentious [21] and a source of uncertainty for this study. STA-
PLE was chosen as it reflects most probable volume based on the
observer volumes, other studies have used the most experienced
observer, consensus or average [1]. The rank from most to least
correlated geometric factor was in descending order X-Dim,
Z-Dim, volume, CI, DCOM and Y-Dim. The inter-model (TCP,
EUD) differences were small (<2%) and similar in magnitude. This

Table 1
Variation in TCPlogit, TCPpossion, EUD and contouring metrics from GS reference volume between observers for all patients.

Patient Stats TCPlogit EUD
(Gy)

TCPpossion DCOM
(cm)

CI Dimension Volume (cm3)

X (cm) Y (cm) Z (cm)

1 Mean 0.40 45.62 0.15 0.27 0.85 11.72 11.32 10.34 701.11
SD 0.00 0.19 0.00 0.18 0.06 0.43 0.83 0.33 99.17

2 Mean 0.63 60.48 0.43 0.92 0.76 8.46 10.21 8.41 349.98
SD 0.01 1.02 0.02 0.47 0.09 1.68 1.54 1.17 92.44

3 Mean 0.62 59.67 0.41 0.19 0.89 11.5 14.38 13.29 1019.14
SD 0.01 0.41 0.01 0.13 0.10 0.65 0.34 0.37 129.6

4 Mean 0.57 53.56 0.34 0.88 0.79 14.2 11.11 14.22 867.39
SD 0.07 8.60 0.10 0.71 0.08 0.43 0.96 5.38 168.36

5 Mean 0.64 60.79 0.44 0.21 0.90 10.49 11.21 10.28 622.31
SD 0.00 0.09 0.00 0.11 0.03 0.29 0.71 0.43 38.64

6 Mean 0.68 64.25 0.50 0.31 0.85 7.35 8.06 6.38 227.28
SD 0.04 2.68 0.06 0.47 0.22 1.19 1.44 0.52 70.5

7 Mean 0.44 43.60 0.24 0.96 0.67 12.12 11.66 14.4 899.29
SD 0.22 21.17 0.16 0.49 0.20 2.76 1.49 2.55 418.7

Abbreviations: COV = center of volume; CI = conformity index; EUD = equivalent uniform dose; TCP = tumor control probability; SD = standard deviation.

Fig. 1. Coronal and axial CT images of observer (red lines) and STAPLE reference (gold lines) PTV contours for case #6 (left) and case #7 (right). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Impact of variation in target volume on mean lung dose.
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suggests that for NSCLC the relationship between geometric varia-
tion and radiobiology is not sensitive to the radiobiology model or
parameters used. This may not be the case for other sites where the
tumor response is less well known. This will likely vary based on
clinical site and technique.

One of the limitations of the current study is the number of
patients analyzed. Seven patients were assessed and may not be
representative of the NSCLC population. There were three observ-
ers that contoured each case three times, giving nine distinct PTV
volumes per case. It is possible that consistent over or under con-
touring by one observer may bias the results of the study. Also, it
has been demonstrated that different planning systems create
margins and interpret volumes of contours differently [22]. The
impact of this was minimized for this study by creating all margins
and plans in Xio. The conformal planning technique used may be
less sensitive to contouring variation than IMRT and VMAT for
example. Techniques with tighter margins would be more sensitive
to variation in delineation when assessed using this method. For
each treatment plan the DVH of the gold standard reference vol-
ume is analyzed, therefore, increasing the margins increases the
chance of irradiating the reference volume to a sufficient dose for
tumor control, conversely smaller margins decrease this chance.
The trade off in these two scenarios is the amount of healthy lung
irradiated. Lütgendorf-Caucig et al. [23] evaluated COM displace-
ments to estimate a PTV margin to ensure minimum CTV coverage
of 95% for 90% of patients using the margin recipe of van Herk et al.
[24]. Adopting this approach for inter-observer and intra-imaging
contouring variation a margin of 11 mm would be required based
on the data in this study.

The geometric parameters most closely related to outcome for
NSCLC were X-Dim, DCOM and CI. In a review of methods of anal-
ysis in contouring studies it was found that X-Dim was employed
in only 1/10 of the lung studies reviewed, while DCOM and CI were
used in 4/10 and 2/10 [1], and volume was the metric of choice in
8/10 studies. This highlights that the choice of metric for assess-
ment of contouring variation is not driven by relevance to clinical
outcome but likely by the tools available to investigators. The
choice of metric will differ based on treatment site and technique.
Therefore, it is recommended that prior to conducting a contouring
study the most relevant metrics should be determined for the
given treatment site and planning technique. This knowledge com-
bined with the minimum required set of geometric descriptors [2]
will ensure results of future contouring studies are consistent and
comparable.

Conclusion

TCP and geometric contour variation demonstrate a significant
relationship for conformal NSCLC radiotherapy with changes in
medial–lateral dimension showing the strongest correlation. Care
should be taken in the choice of GS reference volume. The tech-
nique presented here may be used in the assessment of contouring
protocol violations in multicenter clinical trials and in particular in
the choice of metrics used for analysis.
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Table 2
Spearman’s q for TCPlogit, EUD and TCPpossion and geometric variation for all patients.

Model DCOM Dimension Volume CI

X Y Z

q sig. q sig. q sig. q sig. q sig. q sig.

TCPlogit �0.25 0.05 �0.48 0.00 �0.22 0.08 �0.46 0.00 �0.42 0.00 0.32 0.01
EUD �0.25 0.05 �0.51 0.00 �0.24 0.06 �0.51 0.00 �0.45 0.00 0.31 0.02
TCPpossion �0.24 0.06 �0.48 0.00 �0.24 0.06 �0.46 0.00 �0.42 0.00 0.31 0.02

Abbreviations: COM = center of mass; CI = conformity index; EUD = equivalent uniform dose; TCP = tumor control probability.
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Supplementary Table 1 Patient characteristics 

Patient TNM Histology Prescribed dose (Gy/#) Primary location 

1 T3N0M0 Undifferentiated NSCLC 45/25(PCT) LUL 
2 T2N0M0 SCC 60/30 LLL 
3 T3N0M0 SCC 60/30 Left hilum 
4 T1N3M0 Large cell carcinoma 60/30 Left hilum 
5 T4N3M0 Large cell carcinoma 60/30 LUL 
6 T1aN0M0 Large cell carcinoma 60/30 RLL 
7 T2N2M0 Adenocarcinoma 60/30 RLL 

Abbreviations: NSCLC = non small cell lung cancer; SCC = squamous cell carcinoma; PCT = Pancoast 
tumor; LL = left lung; LLL = left lower lobe; LUL = left upper lobe; RLL = right lower lobe 
 
Radiobiology calculations 
 
Equivalent uniform dose (EUD) [1]:  

 

𝐸𝑈𝐷 =     𝑣𝑖𝐷𝑖
𝑎 

𝑖

 

1/𝑎

 (2) 

 

where vi = normalized volume for the voxel being considered, Di = the dose to the voxel being 

considered and a is a parameter related to the structure being considered (a = -1 for PTVs [2]) that 

drives the model. 

 

TCP based on the logit model (TCPlogit)[3] 

 

𝑇𝐶𝑃𝑙𝑜𝑔𝑖𝑡 =   

 
 
 
 1

1 +  
𝐷50
𝐷𝑖

 
4𝛾50

 
 
 
 
𝑣𝑖

 (3) 
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where D50 = 51.24 Gy is the dose for 50% control, γ50 = 0.83 is the slope of the dose response curve 

[4] 

 

TCP based on Possion statistics (TCPpossion) [3]  

 

𝑇𝐶𝑃 =  
1

2
 
 𝑣𝑖𝑒𝑥𝑝  𝑒𝛾50 (1−

𝐷𝑖
𝐷50

  

 (4) 

 

where D50 = 64 Gy  and γ50 = 1.3 [5] 

Sample size calculation 
 
In order to estimate the number of observations needed for the study, a sample size estimate is 
required. The method described in Machin’s text book [6] was used, where for two normally 
distributed variables it can be shown that: 
 

𝑢𝜌 =
1

2
log  

1 + 𝜌

1 − 𝜌
 +

𝜌

2 𝑁 − 1 
 (1) 

 
In the above equation N is the sample size and ρ is the predicted correlation for significance level α 
and power of 1-β, then: 
 

𝑁 =
 𝑧1−𝛼 + 𝑧1−𝛽 

2

𝑢𝜌
2

 (2) 

 
In order to calculate a value or N to substitute into equation (1) we can calculate an initial uρ 
denoted 𝑢𝜌

0using: 

 

𝑢𝜌
0 =

1

2
log  

1 + 𝜌

1 − 𝜌
  (3) 

 
Machin [6] has tabulated results for which this process was repeated until the two consecutive 
values of N were within unity (Table 1). From this table it can be seen that for ρ = 0.5, α = 0.05 (two 
sided) and 1-β = 0.8 a sample size of 29 is needed. However, this is based on linear correlation (i.e. 
Pearson) and in this study the non- parametric Spearman’s correlation was used. There is not a 
straight forward method for calculating a sample size for Spearman’s ρ however Siegal states that 
Spearman is about 91% as efficient as Pearson [7] therefore the sample size required for Spearman 
is 32. 
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In our study we have used 63 separate contours to investigate the relationship between contouring 
variation and TCP/EUD, which using the above table gives us the power to detect ρ = 0.4, α = 0.05 
(two sided) and 1-β = 0.9. 

 
 
Supplementary Table 2 Sample sizes for detecting a statistically significant correlation coefficient. Table 
adapted from [1]. 

ρ 
α Power 1-β 

One-sided Two-sided 0.8 0.9 

0.1 0.025 0.05 782 1046 
 0.05 0.10 617 853 
 0.10 0.20 450 655 
     

0.2 0.025 0.05 193 258 
 0.05 0.10 153 211 
 0.10 0.20 112 162 
     

0.3 0.025 0.05 84 112 
 0.05 0.10 67 92 
 0.10 0.20 50 71 
     

0.4 0.025 0.05 46 61 
 0.05 0.10 37 50 
 0.10 0.20 28 39 
     

0.5 0.025 0.05 29 37 
 0.05 0.10 23 31 
 0.10 0.20 18 24 
     

0.6 0.025 0.05 19 25 
 0.05 0.10 16 21 
 0.10 0.20 12 16 
     

0.7 0.025 0.05 13 17 
 0.05 0.10 11 14 
 0.10 0.20 9 12 
     

0.8 0.025 0.05 10 12 
 0.05 0.10 8 10 
 0.10 0.20 7 8 
     

0.9 0.025 0.05 7 8 
 0.05 0.10 6 7 
 0.10 0.20 5 6 
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Supplementary Figure 1 TCP and EUD results for PTV (A-D) and V20, EUD and MLD results for lung (E 
& F) grouped with respect to imaging modality and observer 

 
 
 

(A) PTV (B) PTV 
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Supplementary Figure 2 Difference in TCP (A) and EUD (B) between STAPLE plan and observer plans for PTV and MLD (C) between the STAPLE plan and 
observer plans for lung tissue (error bars indicate ± σ).
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a b s t r a c t

Purpose: To perform a comparative study assessing potential benefits of endorectal-balloons (ERB) in
post-prostatectomy patients.
Method and materials: Ten retrospective post-prostatectomy patients treated without ERB and ten pro-
spective patients treated with the ERB in situ were recruited. All patients received IMRT and IGRT using
kilovoltage cone-beam computed tomography (kVCBCT). kVCBCT datasets were registered to the plan-
ning dataset, recontoured and the original plan recalculated on the kVCBCTs to recreate anatomical con-
ditions during treatment. The imaging, structure and dose data were imported into in-house software for
the assessment of geometric variation and cumulative equivalent uniform dose (EUD) in the two groups.
Results: The difference in location (DCOV) for the bladder between planning and each CBCT was similar
for each group. The range of mean DCOV for the rectum was 0.15–0.58 cm and 0.15–0.59 cm for the non-
ERB and ERB groups. For superior-CTV and inferior-CTV the difference between planned and delivered
D95% (mean ± SD) for the non-ERB group was 2.1 ± 6.0 Gy and �0.04 ± 0.20 Gy. While for the ERB group
the difference in D95% was 8.7 ± 12.6 Gy and 0.003 ± 0.104 Gy.
Conclusions: The use of ERBs in the post-prostatectomy setting did improve geometric reproducibility of
the target and surrounding normal tissues, however no improvement in dosimetric stability was
observed for the margins employed.

� 2013 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 109 (2013) 493–497

Adjuvant radiation therapy delivered post radical prostatecto-
my (PP) results in longer time to biochemical failure and improved
local control compared to watchful waiting [1]. Long-term follow-
up of the EORTC 22911 trial concluded that there is a survival
benefit associated with adjuvant radiation following surgery for
patients <70 years or having positive margins [1]. Intensity modu-
lated radiation therapy (IMRT) is becoming the standard of care for
this patient cohort as it provides excellent target coverage and nor-
mal tissue sparing. However, precise daily localization and immo-
bilization is required for accurate delivery of highly conformal
treatments.

Variation in prostate bed location day-to-day has been investi-
gated previously [2–4]. Rectal volumes can vary significantly
throughout treatment from �40 to +60% compared to planning
[3]. Similarly bladder variation can be major, varying up to

200 cm3 [3]. These day-to-day fluctuations can have a substantial
dosimetric effect on both the prostate bed and the normal tissues
[2,3]. Daily imaging with registration to bony anatomy may not
be sufficient in accounting for prostate bed motion. Relative to
bony anatomy, prostate bed displacement exceeded 5 mm in 21%
of treatments in the cranio–caudal (C–C) direction and 9% in the
anterior–posterior (A–P) for 20 patients [4].

Endorectal balloons (ERBs) have been used to stabilize the
internal anatomy for whole prostate treatment [5]. The ERB sits
within the rectum immobilizing the prostate and pushing parts
of the rectum out of the high dose region. ERBs reduced planned
anal wall and rectal wall doses when compared to no ERB [6].
While ERBs have been used in the PP setting [7], no study has
investigated inter-fraction geometric and dosimetric stability PP.
Two PP patient cohorts treated with or without ERB were used to
investigate organ motion and deformation over the treatment
course. Further, the delivered equivalent uniform dose for targets
and normal tissues was compared to planned equivalent uniform
dose (EUD) for both cohorts.

0167-8140/$ - see front matter � 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.radonc.2013.08.024

⇑ Corresponding author. Address: Cancer Therapy Centre, Liverpool Hospital,
Locked Bag 7103, Liverpool, NSW 1871, Australia.
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Methods

Patient data

Subsequent to ethics approval ten patients most recently trea-
ted with adjuvant radiotherapy following radical prostatectomy
were retrospectively selected as the non-ERB group for this pilot
study. A further ten patients were recruited prospectively after
radical prostatectomy to the ERB group (Supplementary Table 1).
The original planning CT was used for patients in the non-ERB
group. Two planning scans were obtained for the ERB group, one
without the ERB and one with the ERB in situ. QLRAD (QLRAD
B.V., Dalfsen, The Netherlands) ERBs were used in this study, de-
tails of which can be found elsewhere [5]. Images were acquired
with a Siemens Somatom™ (Siemens Medical Solutions, Erlangen,
Germany) system using 2 mm slice thickness and a 512 � 512 ma-
trix. All patients were instructed to drink 500 mL of water prior to
simulation and treatment. Additional fiber supplements were initi-
ated one week prior to simulation and continued throughout treat-
ment. The image guided radiotherapy (IGRT) regimen consisted of
daily cone–beam CT (CBCT) fractions 1–5 and weekly thereafter.
All CBCTs were performed on a Synergy accelerator equipped with
XVI (Elekta Oncology Systems, Stockholm, Sweden) with 120 kVp,
1056 mAs using a 20 cm FOV and a bowtie filter.

Delineation

All planning and daily CBCT images were imported into Focal
(Elekta Oncology Systems, Stockholm, Sweden) for registration
and contouring. CBCT images were rigidly registered to planning
scans based on bony anatomy per standard IGRT practice on treat-
ment. Target volumes and normal tissues were contoured on the
planning scan and all CBCTs for each patient (Fig. 1). The PP clinical
target volume (CTV) was delineated according to national consen-
sus guidelines [8]. Briefly, the inferior border of the CTV was
approximately 5 mm below the vesicourethral anastimosis cover-
ing all surgical clips. The inferior CTV (infCTV) was bounded by
the pubis symphysis, levator ani, obturator internus and anterior
rectal wall. Above the superior edge of the symphysis pubis the
superior CTV (supCTV) was extended cranially to include all of
the seminal vesical bed and the distal portion of the vas deferens.
A uniform CTV to planning target volume (PTV) margin of 10 mm
was used. The anterior border of the supCTV encompasses the pos-
terior 15 mm of the bladder. Similarly the whole rectum was con-
toured in three sections: superior rectum from the inferior aspect

of sacroiliac joint to superior border of pubic symphasis, inferior
rectum extended to a line drawn from the coccyx to the inferior
border of the pubic symphasis and the anus which extended an-
other 4 cm. The inner wall of the rectum and anus was contoured
by contracting the outer wall contour by 5 mm [6].

Planning

All patients were planned with step and shoot IMRT, consist-
ing of seven or nine non-opposing, coplanar fields using Xio�

(Elekta Oncology Systems, Stockholm, Sweden). The prescribed
dose was 70 Gy and 64.4 Gy to the inferior and superior CTVs
respectively, delivered in 35 fractions. International Commission
on Radiation Units and Measurements (ICRU) objectives for cov-
erage and dose homogeneity were adhered to [9]. Additional
planning goals limited the volume of rectum receiving 40 Gy to
less than 60% (V40 < 60%) and V60 < 40%. Further objectives lim-
ited V50 < 50% for bladder and V45 < 60% for femoral heads [10].
After registration and contouring, each patient’s original plan
was recalculated on all CBCTs. Due to the unstable CT numbers
of the non-scatter corrected CBCT images all relative electron
densities were forced to unity, except for ERBs which were set
to air [11]. For consistency in dosimetric comparison the plan-
ning CT was also density forced with the same values used for
the CBCTs.

Geometric analysis

An in-house developed MATLAB (The Mathworks Inc., Natick,
MA) application in conjunction with the CERR platform [12] calcu-
lated volume and center of volume (COV) location. The conformity
index (CI) [13] was calculated for each CBCT volume and planned
volume, for the CTV, rectum and bladder volumes and sub-
volumes:

CI ¼ Vplanned \ VCBCTi

Vplanned [ VCBCTi
ð1Þ

where Vplanned and VCBCTi are the planning and ith CBCT contour vol-
umes respectively. A CI equal to unity indicates perfect agreement
while a CI of zero reflects no overlap. The mean absolute surface dis-
tance (MASD) between planning and CBCT volumes was computed
as the average of all Euclidean surface distances per vertex from the
planning scan to each CBCT [14].

A B 
Fig. 1. Sagital views of targets and normal structures delineated for (A) non-ERB and (B) ERB groups. Blue: superior rectum; green: inferior rectum; red: anus; pink: superior
CTV and beige: inferior CTV.

494 Endorectal balloons in post prostatectomy radiotherapy

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

_________  
 
120



www.manaraa.com

Dosimetric analysis

EUD has been shown to be a useful tool when comparing com-
plex radiotherapy plans [15]. The form suggested by Niermierko
[16] was used to evaluate the dose distributions for CTV, rectum
and bladder volumes and sub-volumes:

EUD ¼
X

i

ðmiD
a
i Þ

 !1
a

ð2Þ

where mi is the normalized volume for the voxel being considered, Di

is the dose to the voxel being considered and a is a parameter re-
lated to the structure being considered that drives the model. For
the current study a = 11.9 for the rectum [17], a = 8 for the bladder
[18] and a = �1 for the CTVs [18]. In-house software [19] was used
to calculate EUD and dose volume parameters V50 for bladder, V40

for rectum and D95 for CTV.

Statistics

The SPSS� (SPSS Inc., Chicago, IL) package was used for all sta-
tistical analysis. The two-sample Kolmogorov–Smirnov (K–S) test
was used to compare results between the non-ERB and ERB groups
[20]. Where a p value <0.05 would indicate that the geometric and
dosimetric distributions of the groups were statistically different.

Results

Patient data

For the non-ERB group 91 CBCTs were suitable for contouring
while 71 were suitable for planning. From the 10 patients recruited
to the ERB group, one patient (#10) had a superior non-ERB plan
and was treated without ERB and one patient had to cease ERB
use due to hemorrhoids. This left 70 CBCTs suitable for contouring
and 69 were able to be planned. Image artifacts and clipping were
the leading reasons why some CBCT datasets could not be con-
toured or planned.

Geometric variation

The mean ± SD CI for bladder was 0.54 ± 0.21 and 0.54 ± 0.20 for
the non-ERB and ERB groups, respectively (Supplementary Fig. 1).
Non-ERB/ERB CI values for the whole rectum, inferior rectum and
superior rectum were 0.50 ± 0.12/0.71 ± 0.07 (p < 0.01),
0.51 ± 0.12/0.78 ± 0.08 (p < 0.01) and 0.42 ± 0.13/0.59 ± 0.11
(p < 0.01). Similarly for the CTV, infCTV and supCTV the CI values
were 0.72 ± 0.15/0.73 ± 0.11 (p < 0.05), 0.87 ± 0.07/0.88 ± 0.05
(p < 0.01) and 0.54 ± 0.22/0.56 ± 0.15 (p = 0.1) for non-ERB/ERB.

The difference in location (DCOV) for the bladder between plan-
ning and each CBCT was similar for each group. The range of mean
DCOV for Whole rectum was 0.15–0.58 and 0.15–0.59 cm for the
non-ERB and ERB groups. However, the average change in Whole
rectum volume from planning for the non-ERB and ERB groups ran-
ged from 84–224% and 98–120%. The infCTV DCOV for non-ERB
and ERB ranged from 0.01 to 0.05 and 0.02 to 0.14. The supCTV
range of average change in volume was 75–126% and 55–141%
for non-ERB and ERB respectively. The MASD is displayed in Sup-
plementary Fig. 2 for non-ERB patient#8 and ERB patient#1 as rep-
resentative cases.

Inter-fraction dosimetric stability

Fig. 2 shows variation in V40 from planning value over the
course of treatment for Superior rectum and Inferior rectum. For
supCTV and infCTV the difference (mean ± SD) in D95% for the
non-ERB group was 2.1 ± 6.0 Gy and �0.04 ± 0.20 Gy. While for
the ERB group the difference in D95% was 8.7 ± 12.6 Gy and
0.003 ± 0.104 Gy from the supCTV and infCTV. The difference in
bladder V50 from planned was 20.9 ± 23.5% for the non-ERB group
and 12.6 ± 22.1% for the ERB group. Fig. 3 depicts the difference be-
tween the planned and delivered EUD.

Discussion

This study represents the first comparison of inter-fraction or-
gan deformation and dosimetric stability for patients treated with

Fig. 2. Plots of the difference in V40 for superior (A) and inferior (B) rectum with no ERB (left column) and ERB (right column) red line indicates ideal situation of no variation.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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or without ERB in the post-prostatectomy setting. The ERB im-
proved the CI of the Whole rectum, Superior rectum and Inferior
rectum by 21%, 27% and 17% (p < 0.01). The improved geometric
stability with the ERB did not translate into a statistically signifi-
cant benefit in inter-fraction dosimetric stability based on DEUD.
The reduced dosimetric stability seen for the bladder and supCTV
is likely due to bladder filling and slight differences in ERB inser-
tion depth between fractions.

The range of non-ERB organ motion was similar to those re-
ported in other studies [21]. A study on the use of gold seed fidu-
cials in PP radiotherapy reported slightly larger inter-fraction
infCTV motion of 0.03 ± 0.09 cm, 0.4 ± 2.4 mm and
�0.11 ± 0.21 cm in the LR, SI and AP directions [22]. Compared to
DCOV in this study of 0.01–0.05 cm, these differences are likely
due to the different methods of motion measurement used.

While the affects of the ERB on dosimetric stability were insig-
nificant on average for the ERB cohort, there were indications that
the ERB may be beneficial for some patients. However, it is difficult
to know whether these patients would have been stable if treated
without ERB. For example, patients in each group had single frac-
tion variations between planned and delivered dosimetry that
was deemed clinically significant by the treating physician. As re-
ported elsewhere, the cumulative effect of per treatment differ-
ences is reduced significantly with fractionation [23].

Limitations in this study include the inherent uncertainty in con-
touring anatomical structures, which was minimized by having a sin-
gle observer contour all structures in each group. The same window
and level settings were used for all patients when contouring ERB on
the CBCT scans. This minimized variation in defining the ERB lumen/
tissue boundary. The dosimetric advantages of ERBs are affected by
the differences in the original plan dosimetry, as well as inter-frac-
tion and intra-fraction variations. In a planning comparison study
Smeenk et al. reported a significant improvement in rectum V40 for
the ERB versus non ERB group [6]. A recent study demonstrated re-
duced intra-fraction target motion with ERB for definitive prostate
[24]. The choice of CTV to PTV margins influences the dosimetry anal-
ysis since larger margins will result in the CTV dosimetry being less
sensitive to geometric instability [25]. Further investigation with a
larger study is required to establish accurate margins and confirm
the overall advantages of ERB in PP radiotherapy.

Conclusion

The use of ERBs in the post prostatectomy setting improved
geometric reproducibility of target volumes and surrounding nor-
mal tissues. Improvements in dosimetric stability were inconclu-
sive. A larger study incorporating inter- and intra-fraction motion

is required to appreciate the potential benefit of ERBs in the post
prostatectomy setting.
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Supplementary Table 1 Summary of patient characteristics for each group 

 Non-ERB group ERB group 

Age (years)   

     Median 64 64 

     Range 52-74 52-72 

Time from surgery to RT (months)   

     Median 7.9 24.4 

     Range 2.6-99.4 3-75.7 

Pre-RT PSA (ng/mL)   

     Median 0.12 0.07 

     Range 0.03-0.26 0.04-0.21 

Gleason Score (n)   

     6 0 1 

     7 6 6 

     8 2 1 

     9 2 2 

Pathology (n)   

     pT1 1 0 

     pT2 3 6 

     pT3 6 4 

Extracapsular extension (n)   

     Yes 8 4 

     No 2 6 

Surgical margin   

     Positive 8 5 

     Negative 2 5 

Abbreviations: ERB = Endorectal balloon; RT = radiation therapy; PSA = prostate specific antigen 
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Supplementary Fig 1. Distribution of conformity index results for various organs and sub organs for 

non-ERB and ERB groups.  
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Supplementary Fig 2. Posterior (top row) and anterior (bottom row) views of 3D CTV for no ERB 

(left column, case#8) and ERB (right column, case#1) with mean Euclidean distance from planning 

scan to CBCT represented by color. 
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Abstract 

Background and purpose: Phase three clinical trials are powered based on an estimate 

of the treatment benefit differential between the standard and experimental arms. The 

accuracy of radiotherapy contouring may impact on the ability to distinguish between 

treatment arms. This study aims to model the effect of contouring variation on tumour 

control probability (TCP) and consequently on clinical trial sample size. 

Material and methods: All Australasian observers participating in the PORTEC-3 trial 

were sent a de-identified CT of a female pelvis on which to contour relevant target 

structures and normal tissues. Each observer’s contours were analysed using in-house 

code in conjunction with CERR in Matlab®. A “gold standard” consensus target was 

created by the trial review committee. Geometric analysis consisted of volume, centre 

of mass (COM), and DICE similarity coefficient with the “gold standard” consensus as a 

reference. Four-field-box, conformal and intensity modulated treatment plans were 

generated for each observer set of contours. A standard radiobiological model was used 

to estimate TCP for each plan calculated onto the “gold standard” contours. The 

uncertainty in trial sample size was calculated using standard statistical methods. 

Results: The variation range in CTV volume, COM, and DICE similarity coefficient across 

observers was 293 cm3, 0.29 – 2.7 cm, and 0.49 – 0.98 in relation to the “gold standard” 

respectively. The mean (± σ) variation in TCP compared to the “gold standard” was -

0.29 ± 0.45%, 0.66 ± 0.52%, and 0.18 ± 0.63% for the four field, conformal, and IMRT 

plans respectively. A 0.29% decrease in TCP lead to a required increase of 3 (642 to 

645) patients to maintain the same statistical power. For the worst case of a 1.63% 

decrease seen in one of the four field plans an extra 19 (642 to 661) patients would be 

required. 
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Conclusions: The variation seen in contour definition resulted in a sample size 

uncertainty of 1.4-2.4%. Radiotherapy clinical trials usually include quality assurance 

(QA) to ensure contouring variation is limited to an acceptable level. The method 

reported here could be applied to the results of such QA to improve or verify the 

accuracy of sample size and power calculations for future RT trials. 

 

Introduction 

The randomised controlled trial (RCT) is the most effective means available to answer 

questions about treatment effectiveness when designed, conducted and reported 

appropriately [1]. It is well recognised that robust methodology and quality assurance 

(QA) is required to ensure the validity of RCTs [2]. There are two types of error that trial 

designers go to great lengths to avoid: Type I and II errors, these are described in detail 

by Bentzen [3]. Briefly, Type I errors are false positives (treatment A is found to be 

superior to treatment B when, in fact, it is not) and Type II errors are false negatives 

(treatment A is found to be no better than treatment B when, in fact, it is), see Table 1. 

In a retrospective review of clinical trial benchmarking and case review initiatives, 

Fairchild et al demonstrated that QA measures should ensure optimal radiotherapy 

delivery [4]. There are currently efforts underway to harmonise QA initiatives amongst 

cooperative groups, one such endeavour is the homogeny of clinical trial groups QA 

standards [5]. 

 

Consistency of contouring according to protocol has been investigated for a number of 

RCTs [6-10]. The accuracy and consistency of contouring in a RCT may be affected by 

heterogeneity within contributing institutions technology and experience [11]. 
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Poortmans et al [12] calculated the effect of variation in planning on the projected 

survival for the EORTC 22922/10925 advanced breast cancer RCT. A reduction in 

projected overall survival from 5% to 3.8% at ten years was estimated due to 

suboptimal dose distributions collected using a benchmarking case. Pettersen et al [13] 

modelled the impact of dosimetric uncertainty on sample size for RCTs and showed 

that reduced uncertainty in dose resulted in a significant reduction in required patient 

numbers. Dosimetric uncertainty is influenced by contouring variation and has been 

demonstrated to be significant for a number of clinical sites [14-16]. Thus contouring 

variation may impact on clinical trial outcomes and should be considered in trial 

design. 

 

Table 1 Description of type I and II errors in clinical trials 

  Reality 

  Treatment A ≠ B Treatment A = B 

R
 e

 s
 e

 a
 r

 c
 h

 

p < 0.5 Correct result 
Error (Type I) 

False positive 

p > 0.5 
Error (Type II) 

Correct decision 
False negative 

 

 

PORTEC-3 is a recently closed RCT comparing concurrent chemo-radiation and 

adjuvant chemotherapy verse pelvic radiation alone in high risk and advanced stage 

endometrial carcinoma [17]. The radiotherapy component of this RCT required 

investigators to delineate a number of target structures in the pelvis that were not 

typically contoured in Australasian centres at the time of recruitment commencement. 
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Therefore a decision was taken by the Trans-Tasman Oncology Group (TROG) to 

perform a bench marking exercise to assess contouring consistency amongst 

Australasian clinicians. 

To date there has been no attempt in the literature to incorporate the findings of a 

benchmarking exercise into the sample size calculation of RCTs to account for the 

variation in delineation or planning. This paper presents novel methodology for 

undertaking this, utilising data from the PORTEC-3 benchmarking exercise. The results 

of the benchmarking study and associated methodology have been presented. 

Incorporation of the contouring variation observed in the PORTEC-3 benchmarking 

study into the RCT sample size calculation is presented in the current study. 

 

Methods 

The proposed methodology is described in Fig. 1. and consists of three main stages. The 

first is the assessment of contouring variation using data from the PORTEC-3 

benchmarking exercise. The second involves analysing the impact of the contouring 

variation on dosimetry, this required the generation of treatment plans for the 

benchmarking contours. Unlike a benchmarking study the treatment plans (four field 

box, 4FLD box; conformal, 3DCRT; intensity modulated, IMRT) were generated by two 

investigators (MJ and JM), see section 2.2. Dosimetric variation was assessed using 

physical dose volume histograms (DVH) to calculate tumour control probability (TCP). 

The third stage consisted of incorporating the modelled variation into the RCT sample 

size calculation as uncertainty in the survival rates of the standard and experimental 

arms. 
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Fig. 1. Flow chart with decision points describing the proposed methodology for assessing 
the impact of contouring variation in RCT design (modified from Nelms [18, 19]). 

 

1.1.1 Target delineation 

Participating observers were asked to contour a test case according to trial protocol, 

where multiple observers from single institutions would be contributing patients, each 

individual observer took part. Contouring consisted of the CTV including the upper 

50% of the vagina, the vaginal tissues superior to the vaginal marker, the paravaginal / 

parametrial soft tissues, and the distal common, external, and internal iliac lymph node 

regions. Inclusion of the sub-aortic pre-sacral nodes was recommended for tumours 

with involvement of the cervix. A margin of 7-10 mm was to be used from CTV to PTV 

with a margin of 12 mm in the upper vaginal region to account for bladder and rectal 

filling. “gold standard” reference volumes were created for comparison of observer 
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contours, these consisted of consensus target and organ at risk (OAR) volumes 

delineated by the local trial coordinators. 

 

1.1.2 Treatment planning 

Treatment plans were then generated using the Pinnacle3® v9.0 (Philips Medical 

Systems, Nederland B.V. Best, The Netherlands) treatment planning system (TPS). The 

Adaptive Convolve algorithm was employed with a dose grid of 3 mm3. The sensitivity 

of planning technique to contouring variation was assessed by generating three 

different plans for all benchmarking and “gold standard” contours; 1) a 4FLD box using 

10 MV photons with AP, PA and lateral beams, 2) a 3DCRT plan using seven 10 MV 

photon beams and 3) a 10 MV IMRT plan using “gold standard” OAR volumes in the 

optimization process as normal tissues were not delineated by all participating 

institutions. 

 

1.1.3 Geometric variation 

All available observer’s contours were collated onto a single CT with the “gold 

standard” contours. This was loaded into CERR [20] and an in-house [15] developed 

MATLAB® (The Mathworks Inc, Natick, MA 2009) script was used to analyse each 

observer’s target volumes. The volume and centre of mass (COM) of each observer’s 

CTV contour was assessed. To quantify the variation with respect to the “gold standard” 

target the DICE similarity coefficient (DSC) was used [21]. For each observers’ target 

volume, A, and the gold target volume, B, the DSC is defined as: 

    
 ( ⋂ )

(   )
 (1) 
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A DSC equal to zero indicates that the two volumes do not overlap at all, while a DSC 

equal to one indicates perfect overlap. 

 

1.1.4 Tumour Control Probability (TCP) 

To assess the impact of contouring variation on TCP the “gold standard” target volume 

was assumed to be the true target. Treatment plans were developed as described in 

section 2.2 for each observer’s target. The TCP calculated for the “gold standard” target 

volume. CTV DVHs were used to calculate TCP using the Comp Plan program [22]. 

          ∏

[
 
 
  

  (
     
  

)
    

]
 
 
 
  

 (2) 

 

 

The logit model (equation 2) was used, where the dose to achieve 50% control is TCD50, 

the slope of dose response curve is γ50, the normalized volume is vi and the dose to the 

voxel being considered is Di. Parameters were chosen as the mean values from multiple 

institution adjuvant radiotherapy cohorts as reported by Okunieff et al [23] with TCD50 of 

30.80 Gy, and a γ50 of 0.40 %/%. To assess any bias introduced by choice of model and 

parameters these calculations were repeated with a number of published models and 

data, see supplementary Fig. 1. 
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1.1.5 Statistical Considerations 

The baseline number of required patients was calculated assuming an exponential 

survival curve. With a false positive error rate of 5% (α = 0.05), a power of 80% (1 – β = 

0.80) assuming equal patient numbers in each arm (p = 0.50). An accrual period of 5 

years and follow up of 2.5 years was used to detect a 10% difference in 5-year overall 

survival (OS) with the standard arm having OS of 65-75% [17]. The minimum number of 

patients required in the PORTEC-3 protocol was 655 with a target of 670 and the final 

number included at close was 686. 

 

The variation in TCP due to contouring uncertainty obtained from the PORTEC-3 

benchmarking exercise was then incorporated into the power calculation as 

uncertainties in the OS rates for each arm. These uncertainties were applied to both 

arms equally as patients were randomized.  

 

The sample size calculation was based on a parallel fixed sample size  clinical trial with 

survival as the main endpoint [17]. First the number of events (i.e. deaths) to be 

observed is calculated: 

  
(     ⁄

     )
 

 (   )   ( ) 
      (3) 

Where D is the number of deaths, p is the allocation ratio (i.e. 0.5 for a 1:1 allocation), δ 

is the hazard ratio δ = log(RN)/log(RS) where, RN and RS are the survival rates in the new 

and standard arms. The Z1-α/2 and Z1-β values represent area under the normal 

distribution related to the significance level and statistical power respectively. Once the 

number of deaths (equation 4) required is known the number of patients, N, can be 

estimated.  
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    (   ̅ (     )  )     (4) 

Where   is the accrual rate which is assumed to be known,   is the length of follow up 

from the end of accrual,   is the time at which  ̅ is estimated, a the accrual duration is 

then chosen to give the number of deaths required by Equation (4). Hence the number 

of patients N = ra. To assess the impact of choice of sample size calculation technique a 

number of difference methods were evaluated and compared in Supplementary Fig. 2. 

 

Results 

At the time of analysis, of the 31 datasets distributed to Australasian centres one 

dataset was missing, two were in non DICOM format, five were corrupt and not able to 

be imported into Pinnacle3®, and five of the datasets were exact copies of other 

submissions from the same institution (presumably reviewed by the contributing 

observer). This left 18 distinct datasets available for analysis as part of this study. The 

contours analysed as part of this study are displayed in Fig. 2. 

 

1.1.6 Geometric variation 

Variation in volume of the contoured target is illustrated in Fig. 3 A). The whiskers 

represent the minimum and maximum values while the box shows the 2nd and 3rd 

quartiles. The mean contoured CTV volume was 398.9 cm3 (range: 228.4 – 521.4 cm3). 

The distance between COM (∆COM) of the “gold standard” and each contoured target is 

shown in Fig. 3 A). Most ∆COM were less than 2.0 cm with a mean of 1.4 cm (range: 0.3 

– 2.7 cm). The mean DSC for the CTV was 0.73 (range: 0.49 – 0.98). The observer CTV 

volume with the highest CI also had the lowest ∆COM.  
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Fig. 2. Axial, sagittal and coronal slice through the pelvis showing variation in PTV 

definition 
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Fig. 3. Box and whisker plots representing the variation in A) variation in DSC and COM 
and normalized volume relative to the “gold standard” reference volume and B) the 
variation in TCP as calculated on the “gold standard” reference for each planning 

technique 
 

1.1.7 Tumour Control Probability  

The variation in TCP for each participating centre per planning technique is presented 

in Fig.3 B) and Table 2. There was a significant difference in mean TCP variation 

between IMRT 67.1% (σ = 0.6%) and 4FLD 66.3% (σ = 0.5%; p < 0.01), and 3DCRT 

66.6% (σ = 0.5%) and IMRT (p < 0.01), but there was no significant difference between 

3DCRT and 4FLD (p = 0.25).  The TCP of the “gold standard” target volume and plan 

was 66.9% for the IMRT and 66.7% for the 4FLD box while the 3DCRT plan was 65.9%. 

In comparison to the 4FLD box plan, the IMRT and 3DCRT plans resulted in reduced 

small bowel dose.    

 

 

 

A B 
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Table 2 Difference in TCP from baseline value calculated for “gold standard” reference 
volume specific plan 

 4FLD 3DCRT IMRT 

Mean -0.29% 0.66% 0.18% 

σ 0.45% 0.52% 0.63% 

Max -1.63% -0.34% 1.18% 

 

1.1.8 Sample Size 

Table 3 summarises the effect of the TCP variation on the sample size calculation. Using 

the original survival estimates for the standard and experimental arm the sample size 

estimate was 642 patients. If the systematic and random TCP variation from the “gold 

standard” is included for the 4FLD, 3DCRT, and IMRT planning techniques the sample 

size estimate is 645 (σ = 9), 633 (σ = 13) and 639 (σ = 16) respectively.  

Table 3 Sample size calculations for reference and incorporating contouring variation 
assessed in the PORTEC-3 benchmarking study 

 

Control rate 

(%) 

Experimental 

rate (%) 

Sample size 

estimate 

Planned 65 75 642 

4FLD 64.71 (σ = 0.45) 

74.71 (σ = 

0.45) 645 (σ = 9) 

3DCRT 65.66 (σ = 0.52) 

75.66 (σ = 

0.52) 633 (σ = 13) 

IMRT 65.18 (σ = 0.63) 

75.18 (σ = 

0.63) 639 (σ = 16) 
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The relationship between control in the standard (with corresponding assumptions 

from section 2.5) and the required sample size is displayed in Fig. 4 with the baseline 

sample size marked in red and the mean (solid) ± σ (dashed) for 4FLD marked in green.      

 

 

Fig. 4. Plot showing relationship between control rate and sample size. Obtained by 
varying the survival rate and keeping the risk differential at 10%. Red line indicates 

baseline sample size and green represents mean (solid) ± σ (dashed) sample size for 4FLD 
technique taking contouring variation into account 

 

1.1.9 Discussion 

Clinical trials should be conducted with robust methodology and QA. In trials that 

include radiotherapy it has been shown that as the heterogeneity of the radiotherapy in 

a trial goes up, so too does the number of patients needed to detect a significant 

treatment differential [3]. Thus, it is in the best interest of the trial investigators to 

minimize the heterogeneity in delivered radiotherapy. One of the largest contributing 

factors to treatment heterogeneity in radiotherapy is contouring variation [9].  
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There are a number approaches to minimizing contouring variation in RCTs involving 

radiotherapy, these QA measures have been reviewed by Webber et al [24]. Level 1 is 

site credentialing [25] whereby a site that is contributing patients to a trial(s) is 

credentialed by an outside body. This usually involves a facility questionnaire and a 

dosimetry audit. Level 2 is the bench marking exercise [12] in which an example case is 

sent to institutions that are interested in contributing patients to a trial. These 

institutions generally contour and/or plan this case according to trial protocol and the 

results are made available to the institution. Levels 3 and 4 consist of individual case 

review [26], where either limited selected RCT cases (level 3) or an extensive number 

(level 4) are reviewed by the RCT committee or other QA group. The results of the 

independent case review are then provided to the participating institutions. Level 5 is a 

complex dosimetry check consisting of generating a protocol specific plan on a physical 

phantom, irradiating the phantom and having results reviewed by an independent 

team. Many trials use a combination of these approaches to assess institutions when 

contributing patients to a RCT.  

 

In the current study the results of the ANZGOG/TROG initiated PORTEC-3 

benchmarking study have been incorporated into a RCT sample size calculation. For the 

reference conditions used, the number of patients required was not significantly 

affected by the variation in contouring observed. This can be attributed to the 

contouring variation observed not being substantial given the very large target volume. 

Additionally, due the location of the target volume (medial) the dosimetry was 

relatively insensitive to contouring variation. Observer’s tended to over rather than 

under contour, resulting in adequate coverage of the “gold standard” reference CTV, 

however potential over exposure of OARs (e.g. small bowel and bladder). The largest 
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variation in TCP was observed for the IMRT technique, this was as expected as the 

more conformal the dose distribution the greater the sensitivity to contouring 

variation. 

 

The amount of contouring variation may have been larger than if the benchmarking 

study was run later in the trial. As observers contribute patients to a trial over time 

they become more familiar with the protocol which may reduce the amount of 

contouring variation [4]. As this was an ANZGOG/TROG initiated benchmarking study 

(i.e. not general QA) all of the observers  were from Australian and New Zealand 

centres and therefore may not be representative of the wider international group 

contributing patients to the trial. The benchmarking study only consisted of one patient 

data set and contouring variation may be influenced by patient specific parameters. For 

example, unusual anatomy and poor image quality due to patient size. Also, the 

benchmarking patient was stage IIA grade 3 and the PORTEC-3 trial allows for a variety 

of high risk and advanced stage stratifications [17]. 

 

There are a number of uncertainties and potential bias associated with this type of 

analysis. These relate to radiobiological modelling of TCP with respect to 

model/parameter choice, sample size calculation methods employed, and the 

assumptions on which they are based.  These have been assessed in the supplementary 

material section and potential impacts stated above. Due to the limited availability of 

TCP model parameters for some tumour sites and differences in underlying statistical 

assumptions used, uncertainty and bias analysis should be performed for each trial 

protocol when the methodology proposed in this work is employed Fig. 1. 

 

 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
164



www.manaraa.com

 

 

 

The sample size calculation method used was based on the TROG statistical guidelines 

and was compared to other techniques (see supplementary Fig. 2.). For the 

assumptions made (0.65 control rate with 10% risk difference, see 2.5 Statistical 

Considerations) the spread among the different calculation techniques was 

approximately 40 patients. Although this variance seems large the gradient of each of 

the techniques in supplementary Fig. 2. is approximately equal at a control rate of 0.65. 

Therefore, the reported difference in sample size from baseline will be equal for each 

technique. Ideally statistical design of clinical trials would model the incorporation of 

uncertainties involved in the parameters used. The final number of patients included in 

PORTEC-3 was 686, 16 more than the planned target of 670 with a minimum 

requirement of 655. The minimum number required differs from the 642 calculated in 

above, this is likely due the use of a different method of calculation (see Supplementary 

Fig.2.).  

 

In this study local control (TCP) in the adjuvant setting was modelled as a surrogate for 

overall survival as used in a sample size calculation. Although there is no data on the 

link between TCP and overall survival for endometrial carcinoma one of the aims in 

controlling local disease is the prevention of metastatic spread. In a retrospective 

analysis of high risk patients (stage IC, grade 3) registered but not eligible for the 

original PORTEC-1 trial, local relapse rates for adjuvant RT alone were 13%, while the 

rates of distant metastases and overall survival were 31% and 74% at 5 years [27]. In the 

combined modality setting Greven et al reported the results of adjuvant radiotherapy 

combined with cisplatin/paclitaxel chemotherapy [28]. The four-year recurrence rates 

were 2%, and 19% for pelvic regional and distant disease. Furthermore, overall 

survival and disease free survival at four years was 85% and 81% respectively.  
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For the purpose of the sample size calculations, TCP uncertainty due to contouring 

variation was assumed to be equal in both arms however only the experimental arm 

received chemotherapy. Therefore the effect on TCP of contouring variation may be 

differential as chemotherapy will shift the dose response curve [29, 30]. Additionally, TCP 

uncertainty due to contouring variation may mask the benefit of combined modality 

regimens and can impact on overall survival [9]. This differential effect depending on 

treatment arm may change the assumed risk difference (10% for PORTEC-3) between 

the two arms and hence may have a large impact on sample size. For example, a 1% 

decrease in risk differential (from 10% to 9%) equates to an additional 160 (80 in each 

arm) patients required to maintain 1 – β = 0.80. 

 

There will likely also be contouring variation in any previous studies on which the trial 

in question was based thus, one might argue that the impact of contouring variation is 

already taken into account in the randomization process. Nevertheless, the contouring 

variation or the impact of this contouring variation is likely to vary between the 

previous studies and the study in question. Typically the number of clinicians 

contributing to RCTs is larger than the pilot studies on which they are based increasing 

the probability of inter-observer variation due lack of familiarisation with technique, 

and small patient numbers treated at contributing sites [9]. Moreover, radiotherapy 

treatment and planning technology changes over time. This change in technology might 

be explicit due to new techniques (e.g 3DCRT to IMRT), images used for contouring (e.g. 

CT to MRI based planning), or less obvious due to changes in planning tools and image 

quality [31].  

 

The current study employed two planners to complete the treatment plans using 

contours from the contributing observers, this was to enable the comparison of 4FLD, 
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3DCRT and IMRT techniques. In reality,  a large clinical trial would contain planning 

variation, possibly increasing the impact on sample size. 

 

In a modelling study, Pettersen et al demonstrated that as the uncertainty in delivered 

dose increases, the required sample size to answer a clinical question to a given power 

increases [13]. Poortmans et al reported the results of a benchmarking study from the 

EORTC 22922/10925 protocol and claimed that the dosimetric variation observed may 

lead to a falsely non-significant result, fortunately this was not the case [32, 33]. Both of 

these studies advocate for rigorous QA and dosimetry credentialing of centres before 

contributing to RCTs. Previous work has shown that geometric contouring variation is 

significantly correlated with variation in TCP [15]. While a number studies have assessed 

contouring variation with benchmarking datasets [4] this is the first to assess the impact 

of that variation on the sample size calculation. 

 

Conclusion 

A methodology for the incorporation of contouring uncertainty available through 

preclinical trial QA to assess necessary sample size has been proposed and tested using 

data available from the PORTEC-3 ANZGOG/TROG benchmarking exercise. It was 

demonstrated that contouring variation can result in an increase in required sample 

size. The impact of contouring variation on sample size varies with respect to the 

sample size calculation method and the treatment technique. Consequently, this type of 

assessment should be performed in the initial protocol development stage of 

radiotherapy RCTs. It is of particular importance in combined modality trials where the 

impact of the contouring variation may differ depending on the arm of the trial. 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
167



www.manaraa.com

 

 

 

Supplementary Material 

  

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
168



www.manaraa.com

 

 

 

 

 

Supplementary Fig. 5. Radiobiological model and parameter uncertainty analysis. Figures A), B) and C) show 3D mesh of TCP values for corresponding 
TCD50 and gamma50 parameters. As can be seen from the figures the probit model consistently returns higher TCP values except for larger TCD50 where 

the logit is higher for IMRT and 4FLD and the possion for 3DCRT. These were calculated using the model and parameter values listed in D) [22, 34]. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
C

P
 

TCD50 (Gy) / γ50 (%/%) 

4FLD_logitd50 4FLD_possiond50
4FLD_probitd50 3DCRT_logitd50
3DCRT_possiond50 IMRT_logitd50
IMRT_possiond50 3DCRT_probitd50
IMRT_probitd50

D 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
169



www.manaraa.com

 

 

 

 
 

 

Supplementary Fig. 6.  Sample size calculated using the TROG guidelines [35], Binomial [36], 
Pocock [37], Kelsy, Fleiss and Fleiss with continuity correction  [38]. Assuming a 10% risk 
differential between the standard and experimental arms. Red vertical and horizontal 

lines indicate standard arm survival and corresponding sample size estimate from 
PORTEC3 protocol. 
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Chapter 10: Discussion and conclusions 

10.1 General discussion 

Despite much advancement in the techniques and technology associated with 

radiotherapy treatment planning and delivery, there are a number of aspects 

that still present challenges and require further research. Accurate and precise 

delineation of targets and normal tissues is still one of the largest uncertainties 

in the radiotherapy planning chain[1]. One of the shortcomings of the contouring 

study literature is the lack of consensus on metrics of comparison of contours[2], 

the result of which is the inability to compare results between studies. Chapter 4 

addresses this problem by presenting a framework for establishing the most 

significant metrics of variation for particular treatment sites and techniques. 

This, combined with a minimum set of metrics[2] and appropriate statistical 

presentation should allow for the inter-comparison of contouring studies in the 

future. 

 

There has been considerable effort devoted to the development of robust 

automatic treatment planning techniques but these are yet to become 

widespread[3, 4]. The results of chapter 5 demonstrate that plan quality 

decreased with decreasing planner experience, and, the efficiency of plan 

delivery also increased with increasing planner experience. These results could 
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be seen as an example as to why automated inverse planning techniques 

warrant further investigation in head and neck radiotherapy. 

 

A number of techniques to account for organ motion in the delivery of 

radiotherapy have been proposed but not widely adopted[5].  This lack of 

adoption may be due to the difficulty is assessing the effectiveness or otherwise 

of these devices. The analysis techniques used in chapter 4 were suited perfectly 

to investigating the organ motion problem on delineated daily CBCT imaging 

and could be applied to a number of situations to assess the effectiveness of 

IGRT approaches. 

 

Clinical trials are regarded as the gold standard when it comes to making 

informed decisions about health care interventions[6]. However, it is also 

recognised that clinical trials need to be robustly designed and implemented to 

ensure results are unbiased[6]. Quality assurance in radiotherapy clinical trials is 

the key tool in ensuring that the results of a trial are valid and widely applicable. 

By assessing the impact of contouring variation on modelled outcome using the 

same analysis techniques described in chapter 4 it is possible to make clinical 

trials more robust to radiotherapy planning uncertainty, thus increasing the 

effectiveness and impact of these trials which form the cornerstone of 

radiotherapy practice. 
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This thesis represents a body of work investigating areas of uncertainty in 

radiotherapy planning, delivery and clinical trials. The main themes of the 

conducted research were outlined in Chapter 1 and include: 

 

I. The impact of contouring variation on modelled radiotherapy outcome 

II. The influence of planner experience on IMRT plan quality 

III. Investigation of organ stability, dosimetry, and margins in the presence 

of organ stabilising devices 

IV. Benchmarking and assessing the impact of contouring variation in 

radiotherapy clinical trials 

 

Like William Tell, guiding the arrow to hit the apple, the delivery of safe and 

effective radiotherapy needs to be both accurate and precise. Accuracy and 

precision are inextricably linked in the aim of radiotherapy; to maximise the 

probability of cure without injury. The work presented here seeks to address 

the issue of precision. The issue of accuracy can only be addressed once 

radiotherapy contouring, planning and treatment are precise.  

 

10.2 The impact of contouring variation on modelled 

radiotherapy outcome  

Chapter 4 investigated the relationship between geometric contouring variation 

and outcome surrogates in the form of tumour control probability (TCP), 
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equivalent uniform dose (EUD) and mean lung dose, for a series of non-small 

cell lung cancer (NSCLC) patients. With a view to recommend relevant 

geometric parameters for the assessment of contouring variation that relate to 

modelled clinical outcome. Seven patients were included in the study and 

contouring was performed by three observers on CT and PET imaging datasets. 

Geometric variation was assessed and compared to resulting variation in TCP, 

EUD and mean lung dose.  

 

Statistically significant relationships were observed for most geometric 

parameters with the strongest correlation pertaining to medial-lateral 

dimension of the target volume, centre of mass, and concordance index. In 

Chapter 3 it was found that medial-lateral dimension was employed in only 

1/10 of the lung studies reviewed, while centre of mass and concordance index 

were used in 4/10 and 2/10, and volume was the metric of choice in 8/10 

studies. This highlights that the choice of metric for assessment of contouring 

variation is not driven by relevance to clinical outcome but likely by the tools 

available to investigators. The results of this work should inform the choice of 

metric used and ensure future contouring studies are more consistent and 

comparable. 

 

Most investigations of contouring variation require some sort of reference 

volume to compare to. This is often called the ‘gold standard’ or ‘reference’ 

volume. As the true extent of the tumour is not known these gold standard 
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volumes can take a number of forms; mathematical averages, probabilistic (e.g. 

STAPLE), consensus, and most experienced observer, have all been used in the 

literature. This is an area that warrants further investigation as the choice of 

gold standard can have a strong influence on the analysis of results. 

Understanding the impact of the choice of gold standard on the typical 

contouring variation metrics is of interest. This, in conjunction with the impact 

on dosimetry, may also serve to provide some reference values for typical 

contouring variation metrics for future investigators. 

 

10.3 The influence of planner experience on IMRT plan 

quality 

In Chapter 5, the impact of varying degrees of radiotherapy planner experience 

on plan quality was presented. Six planners generated IMRT treatment plans for 

a T2N3M0 tonsilar carcinoma case according to department protocol. Plans were 

compared visually by an experienced radiation oncologist and also using a 

number of dose-volume constraints and conformity indices. Delivery efficiency 

and dose accuracy were also compared. Only 3/6 of the planners were able to 

meet the dose objectives for the PTV. All planners could meet the constraints for 

the brainstem, spinal cord, mandible and oral cavity, with the exception of one 

planner whom failed to meet the mandible constraint. No planners achieved the 

required dose volume constraints for the right parotid or larynx but these 

structures overlapped with the PTV. Interestingly, the radiation oncologist, on 
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slice by slice review, deemed all plans of a clinically acceptable quality. 

Treatment delivery time and monitor units ranged from 15-25 minutes and just 

under 800 to over 1200 MU with delivery time increasing with decreasing 

planner experience. The planner with the least experience had the poorest plan, 

as indicated by meeting the fewest PTV constraints.  

 

10.4 Investigation of organ stability, dosimetry, and margins 

in the presence of organ stabilising devices 

An investigation into the use of ERBs in the post prostatectomy setting is 

presented in Chapters 6 and 7. It has been known for some time that the 

prostate bed can experience inter- and intra-fraction motion due its proximity 

to the bladder and bowel, organs that are constantly filling and emptying[7]. This 

study was completed in two parts. The first of which, Chapter 6, addressed the 

question of whether the addition of an ERB in situ improved dosimetric inter-

fraction reproducibility with the same treatment margins. The second, Chapter 

7, investigated whether the organ motion component of the PTV margin could 

be reduced when an ERB is used. For both of these studies 20 patients were 

included in the investigation, 10 retrospective patients treated with standard 

practice and 10 prospective patients treated with an ERB in situ. The treatment 

consisted of IMRT with a prescribed dose of 70 Gy to the inferior CTV and 64.4 

Gy to the superior CTV.    
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The ERB significantly improved inter-fraction reproducibility for the rectum 

and the CTV. Concordance indices for non-ERB and ERB of 0.50 ± 0.12/0.71 ± 

0.07 for the rectum and 0.72 ± 0.15/0.73 ± 0.11 for the CTV. However, the 

improved geometric stability with the ERB did not translate into a statistically 

significant benefit in inter-fraction dosimetric stability based on a change in 

equivalent uniform dose (ΔEUD). A reduced dosimetric stability for the bladder 

and supCTV was found and is likely due to bladder filling and slight differences 

in ERB insertion depth between fractions. One of the positive aspects of using 

the ERB was that it reduced the impact of bladder filling on CTV stability. The 

results of Chapter 6 agree with previous investigations in that a differential PTV 

margin is warranted given the relative difference in stability between the 

superior and inferior CTV. 

 

10.5 Benchmarking and assessing the impact of contouring 

variation in radiotherapy clinical trials 

Radiotherapy clinical trial quality assurance has become a focus in recent times, 

due in part to some sobering secondary analyses[8, 9] of large, well-funded and 

run cooperative group run trials. Chapters 8 and 9 illustrate the implementation 

of a dummy run to assess any possible protocol non-compliance and a 

modelling study incorporating the results of the dummy run into the trial 

design. While it is well understood that uncertainty due to contouring variation 

is larger than that of setup error for some tumour sites[1], hence the routine use 
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of dummy run exercises, there has been no effort to account for this in the 

design of clinical trials. 

 

The range of variation in volume was 228.5-497.8 cm3 for CTV contouring. 

Uncertainty was largest in the z (superior / inferior) direction where 

investigators did not adhere to protocol contouring guidelines. For the 

benchmarking study the dose from the investigator submitted plans were 

analysed against a set of gold standard contours. Dosimetric variation in 

Chapter 8 was not substantial, although it should be noted that the four field 

(4FLD) box planning technique used is relatively insensitive to contouring 

variation within the borders of the “box” dose distribution. In Chapter 9, to 

remove variation due to planning and focus on contouring all planning was 

performed centrally using a class solution planning technique. The IMRT 

planning technique demonstrated the largest variation in TCP with a range of 

0.65-0.68, due to the conformity of the dose distribution with the shape of the 

contour. This TCP variation did not have a large impact on the required sample 

size, only requiring an extra 19 patients for the worst case. However this work 

provides a framework to incorporate uncertainties quantified as part of routine 

dummy run exercises to ensure robust results are obtained from RCTs. 
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10.6 Future work 

From the topics presented in this thesis there are a number of issues that justify 

further investigation, including: 

I. The introduction of guidelines and minimum reporting requirements for 

the conduct of contouring studies in radiation oncology 

II. Applying the technique presented in Chapter 4 to other treatment sites 

to determine the appropriate metrics of contour variation to report. 

III. The intra-fraction stability of the post prostatectomy target volume with 

ERB in situ 

IV. The development of automated methods of performing radiotherapy 

clinical trial quality assurance 

V. The inclusion of planning and delivery uncertainties in prospective 

radiotherapy clinical trials 

 

As outlined in Chapter 3 there is no consistent evidence based method of 

contour comparison within the literature. Contouring uncertainty has become 

increasingly important as the accuracy of dose calculation and radiation 

delivery has improved. Without a consistent method of reporting variation in 

contouring for tumour sites, it will continue to be problematic to combine the 

results of these studies in meta-analyses. There has been a push from some 

publishers to include a minimum set of information when reporting planning 

studies so that other investigators can repeat experiments and compare 

hypotheses, the same should apply to contouring studies[10]. A review or 
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recommendation publication detailing appropriate methodology and reporting 

for contouring studies would facilitate the comparison of results from different  

studies and allow for the appraisal of the quality of individual studies in a 

uniform way. Applying the work presented in Chapter 4 to other treatment sites 

and techniques will inform the appropriate contouring variation metrics to use. 

 

Further investigation is warranted by extending the studies presented in 

Chapters 6 and 7, including a larger number of patients and analysing intra-

fraction motion. The pilot study presented in Chapter 6 could be used to inform 

the sample size calculation for a larger prospective trial. As part of that trial the 

impact of the ERB on intra-fraction motion should also be considered. Although 

SBRT has not been used in the post-prostatectomy setting to date, a thorough 

understanding of intra-fraction motion is needed perform SBRT safely.  

 

Radiotherapy clinical trials are expensive, time consuming and complicated to 

run[6]. It is therefore important that the methods used when conducting a trial 

are robust and the protocol strictly adhered to. The technique presented in 

Chapter 9 could be used in prospective clinical trials to ensure there is adequate 

statistical power in the design of the trial to account for treatment uncertainties. 

Expert review is the current method of individual case review in radiotherapy 

trials. This is very expensive and can be a limiting factor to recruitment in some 

instances. Moreover, for trials involving adaptive radiotherapy where a patient 
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may have many treatment plans that require review, manual expert review will 

not be viable.   

 

10.7 Summary 

This work assessed the impact of organ motion, planner experience and 

contouring variation on plan quality. Furthermore, the same techniques were 

applied to a clinical trial dummy run, the results of which were used to assess 

the impact of contouring variation on the statistical power of an RCT. A method 

to ascertain the most relevant metrics of use when assessing contouring 

variation was presented. The choice of such metrics will be site and planning 

technique specific. Planner experience was demonstrated to have an impact on 

the quality of radiotherapy planning for head and neck IMRT. A lack of planning 

experience also resulted in IMRT plans that were less efficient to deliver. It was 

shown that the ERBs reduce the amount of inter-fraction motion for post 

prostatectomy radiotherapy. However, a larger prospective trial is required to 

confirm these results and the dosimetric impact of the ERB. A technique for the 

incorporation of planning uncertainty into clinical trial sample size calculations 

was proposed. This process, combined with rigorous QA, provides a simple 

means to use data from dummy run exercises to ensure the robustness of the 

trial sample size calculations. 
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This dissertation represents a series of studies into the impact on radiotherapy 

quality and clinical trial power of organ motion, planner experience and 

contouring variation. The key priorities for continuing this work are: 

 Developing standardised practices when performing and reporting 

contouring studies in radiation oncology 

 Using the results of benchmarking procedures to ensure the robustness 

of sample size calculations in RCTs 

It is hoped the work reported in this thesis will contribute to the way in which 

clinician defined contour uncertainties, organ motion uncertainties and there 

impact on dose targeting and hence tumour control are assessed and reported 

in the future. 
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Appendix A: A phantom assessment of achievable contouring 

concordance across multiple treatment planning systems 
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a b s t r a c t

In this paper, the highest level of inter- and intra-observer conformity achievable with different
treatment planning systems (TPSs), contouring tools, shapes, and sites have been established for metrics
including the Dice similarity coefficient (DICE) and Hausdorff Distance. High conformity values,
e.g. DICEBreast_Shape = 0.99 ± 0.01, were achieved. Decreasing image resolution decreased contouring
conformity.

� 2015 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology xxx (2015) xxx–xxx

Delineation of radiotherapy structures has direct clinical conse-
quences. Contouring of nodal CTV sub-volumes in particular, is
critical [1]. Even moderate geometrical differences in small neck
Planning Target Volumes (PTVs) can impact on the target dose
(up to 11 Gy reductions in D99 for DICE above 0.8) [2]. For
non-small lung cancer variation a concordance index (CI) has been
demonstrated to result in variation in Tumour Control Probability
(TCP) [3], highlighting the correlation between contour variation
and TCP. However, there are no reported contour variation metric
baseline values considering uncertainties in the process such as
different treatment planning systems (TPSs), importing and
exporting processes, contour shapes, volumes and image resolu-
tion. Knowledge of these baseline values is important for clinical
trials which commonly occur across multiple centres and TPSs.
Current literature does not give clear guidelines for reporting
contouring variability in inter-observer studies [4] with variation
in methodology and metrics only enabling comparison between
inter-observer studies in a limited fashion [5]. As such, calculating
multiple metrics including a combination of descriptive statistics,

overlap measures and statistical measures of agreement is
recommended for multiple observer studies [6].

The number of studies reporting on auto-segmentation [7,8],
and the inter- [9,10] and intra- [11] observer conformity of
volumes is growing. Inadequate definition of the Gross Tumour
Volume (GTV) or Clinical Target Volume (CTV) leads to systematic
uncertainty which may result in geometric miss of the tumour
throughout the course of patient radiation therapy [5]. As such
there has been an increasing trend to assess, and reduce, the vari-
ability of these target volumes. This study determined the highest
concordance metrics achievable, and how these metrics (details
given in Supplementary Table 1) may vary in a best case phantom
scenario considering: multiple sites, variation between TPSs,
shapes, volume, tools utilized and adherence to auto-threshold
settings within the protocol.

Methods

A Quasar Body phantom (Modus Medical Devices Incorporated,
Ontario Canada) was used to provide an initial CT dataset. The
Quasar phantom was scanned on a Brilliance Big Bore CT (Phillips
Healthcare, The Netherlands) using a helical abdomen scanning
sequence: 1 mm slice spacing, 2 mm slice thickness, standard
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0167-8140/� 2015 Elsevier Ireland Ltd. All rights reserved.

⇑ Corresponding author at: School of Physics, Engineering and Information
Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.

E-mail address: elisep@uow.edu.au (E.M. Pogson).

Radiotherapy and Oncology xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal .com

Please cite this article in press as: Pogson EM et al. A phantom assessment of achievable contouring concordance across multiple treatment planning sys-
tems. Radiother Oncol (2015), http://dx.doi.org/10.1016/j.radonc.2015.09.022

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

______________________________________________________________________________________________________________________ 
 
189

http://dx.doi.org/10.1016/j.radonc.2015.09.022
http://dx.doi.org/10.1016/j.radonc.2015.09.022
mailto:elisep@uow.edu.au
mailto:elisep@uow.edu.au
http://dx.doi.org/10.1016/j.radonc.2015.09.022
http://dx.doi.org/10.1016/j.radonc.2015.09.022
http://www.sciencedirect.com/science/journal/01678140
http://www.sciencedirect.com/science/journal/01678140
http://www.thegreenjournal.com
http://www.thegreenjournal.com
http://dx.doi.org/10.1016/j.radonc.2015.09.022
http://dx.doi.org/10.1016/j.radonc.2015.09.022


www.manaraa.com

resolution (512 � 512) and field of view of 350 mm. This phantom
had three inserts containing structures providing a range of surface
contours and edges. In this study the 20-degree air wedge con-
tained in the first insert (referred to as the triangular prism) and
the entire empty third insert (an 8 cm diameter cylinder with
semi-conic top) were used for contouring.

The Quasar phantom CT dataset was imported into MATLAB
R2012a (Mathworks Incorporated, Natick USA). Uniform rectangu-
lar prisms and a patient breast volume (203 cm3) were inserted
into the CT dataset using ‘Computational Environment for Radio-
therapy Research’ (CERR) [12,13] and MATLAB. High intensities
were utilized to obtain optimal image contrast. The Quasar
phantom with inserted shapes is displayed, with inter-observer
contours, in Supplementary Fig. 1.

A contouring protocol set image window levels to Window/
Level = 400/800 HU and described allowable techniques/tools. All
eight rectangular prisms were auto-contoured using auto-
threshold at recommended threshold values or other automated
tools (e.g. Oncentra’s magic-wand tool). Rectangular prisms 1, 4
and 8 (Supplementary Fig. 1) were manually contoured. Bounding
boxes in auto-contouring and zoom functions were allowed. The
breast contour was manually delineated; allowing interpolation
between slices and/or copy to next slice. The triangular prism
and cylinder were both delineated using automated tools (such
as auto-threshold) and manually. All eight observers were blind
to others contours. The TPSs used for contouring were; Eclipse
Planning System 11.0.64 (Varian Medical Systems, Palo Alto
Canada): two sites, Oncentra (Elekta, Stockholm Sweden): two
sites, Pinnacle3 9.0 (Philips, Netherlands): two sites, and FocalSim
4.80.01 (Elekta, Stockholm Sweden): two sites. These contours
were then exported and collated in CERR.

The same original 512 � 512 data-set was contoured five times
by four observers, with a minimal 24 h time lapse between con-
touring. Pairwise analysis of the Jaccard Index (JI) also known as
conformity index or concordance index (CI) [6,14] (CIpairs the aver-
age of all possible pairs of the JI which equates to CIgen when
mutual variability between all observers is the same [15]), Volume
Overlap Index (VOI) and Hausdorff Distances (HDs) were calcu-
lated for each observer and averaged. This was performed for all
manually contoured structures.

Different studies have different image resolutions. As such the
Quasar phantom was resampled and contoured by five different
observers, to show the expected inter-observer effects for differing
sample/dataset pixel size and slice thickness. The resampling was
performed in MATLAB with the overall volume maintained. Slice
thickness was also set to the spacing of 2 mm, 4 mm and 8 mm
keeping the resolution at 512 � 512 px (1.463 px/mm) and saved
as DICOM. The resampled DICOM data were of the following reso-
lutions; 512 � 512 px2 (1.463 px/mm – a typical high resolution
CT), 350 � 350 px2 (1.000 px/mm), 245 � 245 px2 (0.700 px/mm),
175 � 175 px2 (0.500 px/mm), 88 � 88 px2 (0.250 px/mm), and
44 � 44 px2 (0.125 px/mm).

To allow comparison between observers, simultaneous truth
and performance level estimation (STAPLE) volumes were
generated as consensus gold standard reference volumes in CERR,
using a 90% confidence interval with observers weighted equally.
CERR was utilized to calculate the generalized kappa statistic as
well as the DICE, and JI in three dimensions for all observers
comparing to the gold standard STAPLE volume (Supplementary
Table 1). The maximal HD, average Hausdorff Distance, CIpairs and
VOI was calculated in a pairwise analysis over all volumes in
MilxView (Australian e-Health Research Centre (AEHRC), Australia)
[16,17] (Supplementary Table 2).

The JI [18–20], DICE [4], Hausdorff distance [21] and Kappa (j)
statistic [22,23] outlined in Supplementary Table 1, are metrics
commonly used to establish inter-observer variation [6]. JI and

DICE values from CERR were verified in 3D Slicer [24–26] and
MILXview and were consistent to within 2 significant figures.

Results

Eight auto-contoured, inter-observer rectangular prism
contours from different TPSs were all within two pixels of the true
volume on every slice, for every point within the contour (Fig. 1(a)).
The maximum HD of these contours compared to the STAPLE ran-
ged from 1 pixel width/height (0.68 mm) or 2 pixels added in
quadrature (0.97 mm), with a maximum of 3 pixels (2.04 mm) for
the auto-contoured rectangular prisms (Fig. 1(c)). As the STAPLE
for square 5 is different to the true volume there are larger HDs
and discrepancies for this volume. A pairwise HD measure, rather
than to the STAPLE, is less sensitive to such errors and is used in
all following analysis. Fig. 1(b) displays each inter-observer’s DICE
compared to the STAPLE. Inter- and intra- observer contour varia-
tion as measured by maximum HD relative to the STAPLE volumes
was less than 7 mm for all volumes at normal resolution (1.463 px/
mm). Kappa statistics comparing multiple shapes from the Quasar
phantom show near perfect agreement for most shapes despite
asymmetry from the breast contour (Supplementary Fig. 2).

Auto-contoured rectangular prisms were less conformal
(kappa in the range of 0.61–0.80) than manually delineated shapes
(kappa in the range of 0.81–1), (Supplementary Fig. 2), with other
shapes having no difference. The contouring tool used did not
show any observable effect in contour conformity. Average manual
and auto-threshold DICE were in agreement (within the 95%

Fig. 1. Auto-contoured squares; a) Percentage deviation of volume from the true
volume. Majority of contours are within 1 px and the rest within 2 px, b) DICE c)
maximum HD from the STAPLE volume.

2 A multi-observer concordance baseline
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confidence limit) for all shapes. The JI, average DICE and kappa for
the manually delineated shapes are summarized in Supplementary
Table 2.

Inter-observer generalized kappa statistics for differing shapes
is shown in Fig. 2(a). Decreasing image resolution reduces concor-
dance, especially for smaller structure volumes e.g. triangular
prism (47 cm3). This is evident in the average DICE compared to
the STAPLE volume in each image (Fig. 2(b)) and the average
maximal HDs (Fig. 2(c)). The breast contour and some rectangular
prisms with an image resolution of 0.250 px/mm and 0.125 px/mm
were excluded as the outline was not visible at recommended
window levels due to resampling.

As resolution decreases below 0.250 px/mm, the relative inter-
observer DICE also decreases for manual contours, despite Fig. 2(b)
showing good concordance compared to the STAPLE generated on
each individual resolution dataset. Supplementary Fig. 3, displays
the relative DICE of contours with lowering resolution compared
to the highest resolution image (1.49).

Varying the slice thickness from 1 mm to 2 mm, 4 mm and
8 mm had no significant effect on inter-observer conformity.

Discussion

This investigation has demonstrated that despite the use of
multiple treatment planning systems, it is possible to achieve close
to perfect conformity between observers with a high contrast data-
set. Conformity is reduced with reduction in image resolution and
volume of the structure considered.

The relative deviation, as shown in Fig. 1, increases for smaller
volumes i.e. up to �30% for a small volume of 2.7 cm3. Additional
differences may occur during import and export through multiple
TPSs, as the same volume exported from multiple TPSs has been
shown to vary from 2% to �4% for small volumes (less than
250 cc) [27]. The HDs, as shown in Fig. 2(c), are increasing due to
lengthening pixel sizes. This was similar to results shown in
another study [28].

Inter-observer variation is shown to increase with lower resolu-
tion. Intra-observer variation is either in agreement or smaller than
inter-observer variation similarly to previously reported clinical
findings [5]. Disagreement between the same TPS is evident for
contours generated using auto-threshold tools in the same TPS
by different observers, (Fig. 1(c)). Hounsfield Units (HUs) used for
Auto-thresholding were requested, and showed significantly
different HUs had been used. This ambiguity is likely due to con-
version between TPSs. We recommend that the conversion
between multiple TPSs for inter-observer studies be performed
and sent out with the study dataset in future studies. The highest
achievable values are dependent upon image resolution, contour
volume, number of observers, image contrast, window level and
adherence to the protocol.

Previously reported values in breast radiotherapy CTV inter-
observer studies include a JI of; 0.81 for radiation oncologist breast
contouring [9], 0.84 for radiation therapist breast contouring [9],
0.87 for glandular breast volumes [14], 0.56 for partial breast
volumes [14] and 0.82 for glioblastoma GTV’s (Gross Tumour
Volumes) [29]. An inter-observer breast contour generalized kappa
of 0.97 (p < 0.05), maximal HD of 3.42 mm, average JI of 0.98 ± 0.01
and average DICE of 0.99 ± 0.01 was found in this study. This
demonstrates the highest achievable values for future expert clin-
ician contours compared to a STAPLE volume, for an acceptable
number of observers (five or more, with a recommendation to have
as large a number of expert observers as possible for small volumes
[28]) and a standard CT image resolution (512 � 512). The gold
standard STAPLE volume has been generated by the contours
assessed here, whilst this has minimal effect, in an ideal study
the aim would be to have a separate group of contours to generate

a gold standard STAPLE and compare to this. To avoid this metrics
such as CIpairs or VOI may be utilized instead. Complexity of shape
showed no observable effect in conformity, as the complicated
breast contour achieved a higher average DICE, average JI and
Kappa than the cylinder and rectangular prism, of similar volumes.
However an assessment of more complicated irregular shapes than
rounded breast contours still needs to be undertaken.

In summary, multi-observer results from multiple TPSs, differ-
ing TPS tools, image resolution, image slice thickness, contour
shapes and volumes has been established for average DICE, average
JI, CIpairs, VOI, kappa, average HD and maximum HD. Values
obtained in this phantom study suggest that multiple sites and sys-
tems do not have significant impact on concordance metrics for
these particular volumes. Values presented here may provide an
upper bound as to what is achievable in future studies. Alterna-
tively if images are of significantly different image resolution,
extremely small volumes (such as a head and neck study), of more
irregular shape, or with less observers, future studies might con-
sider including another object/dataset to determine their highest
achievable kappa, average DICE or average JI under these circum-
stances. This could be undertaken on a study by study basis.
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Fig. 2. Manually delineated Inter-observer a) STAPLE parameters with differing
image resolution; Kappa, Specificity, Sensitivity and Volume, b) 5 observer average
DICE and c) 5 observer average Hausdorff Distances. Error bars represent 1SD. The
STAPLE in the resampled images have lower specificity and sensitivity with
lowering resolution. The 95% confidence intervals also increase, for small volumes,
with worsening resolution (as the amount of data is reduced).
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Appendix B: Contouring Variability and its Effect on 

Radiobiology Parameters for Head and Neck Cancer 

Yvette Griffiths, MSc, Sydney University, School of Physics 
Supervisors: Dr Lois Holloway, Michael Jameson 

Abstract 

Inter and Intraobserver variation in delineation (or contouring) of tumour and normal 

structures is a widely recognised issue in radiotherapy. Many studies have quantified 

this variation and investigated ways to reduce it. If a contour is inaccurately delineated, 

the tumour may be underdosed or normal tissues overdosed. Currently there are 

studies that have shown a clinical impact from inter/intra observer variation through 

the use of radiobiological models for both tumour and normal tissues. 

The aim of this project is to investigate a potential correlation between geometrical 

variations in contouring and radiobiologically modelled clinical outcome. 

Multiple contours were generated mathematically and by observers on head and neck 

cancer CT datasets. An IMRT dose distribution was generated based on each contour. 

Then the contours were analysed for geometric variation and modeled clinical outcome. 

The contouring variation and modelled clinical outcome was correlated. 

The results showed a 13.86% length variation in the x direction, as a percentage of the 

mean. The change in predicted clinical outcome was 56.68% (of the mean). A trend in 

correlation was seen between the length of the x, y and z dimensions and modelled 

clinical outcome. A trend was  also seen between volume change and predicted clinical 

outcome. 

The correlation trends found in this study could potentially be used for predicting the 

effect that contouring change clinical outcome. To achieve more conclusive results, a 

larger future study would be required, in order to develop guidelines to predict the 

effect of inaccurate structure delineation. 
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